Adsorption of a Switchable Cationic Surfactant on Natural Carbonate Minerals

Author:

Cui Leyu1,Ma Kun1,Abdala Ahmed A.2,Lu Lucas J.1,Tanakov Ivan1,Biswal Sibani L.1,Hirasaki George J.1

Affiliation:

1. Rice University

2. Petroleum Institute, Abu Dhabi

Abstract

Summary A switchable cationic surfactant (e.g., tertiary amine surfactant Ethomeen C12) was previously described as a surfactant that one can inject in high-pressure carbon dioxide (CO2) for foam-mobility control. C12 can dissolve in high-pressure CO2 as a nonionic surfactant and equilibrate with brine as a cationic surfactant. Here, we describe the adsorption characteristics of this surfactant in carbonate-formation materials. The adsorption of this surfactant is sensitive to the equilibrium pH, the electrolyte composition of the brine, and the minerals in carbonate-formation materials. Pure C12 is a nonionic surfactant. When it is mixed with brine, the solution has a high pH and limited solubility. However, when the surfactant solution in brine is equilibrated with high-pressure CO2, the pH is approximately 4; the surfactant switches to a cationic surfactant and becomes soluble. Thus, the adsorption is also a function of pH. The adsorption of C12 on calcite at low pH is low (e.g., 0.5 mg/m2). However, if the carbonate formation contains silica or clays, the adsorption is high, as is typical for cationic surfactants. The adsorption of C12 on silica decreases with an increase in divalent (Ca2+ and Mg2+) and trivalent (Al3+) cations. This is because of the competition for the negatively charged silica sites between the multivalent cations and the monovalent cationic surfactant. An additional effect of the presence of divalent cations in the brine is that it reduces the dissolution of calcite or dolomite in the presence of high-pressure CO2. The dissolution of calcite and dolomite is harmful because of formation damage and increased alkalinity. The latter raises the pH and thus increases the adsorption of C12 or even causes surfactant precipitation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3