Recent Advancements in Far-Field Proppant Detection

Author:

Palisch Terry1,Al-Tailji Wadhah1,Bartel Lew1,Cannan Chad1,Czapski Matt2,Lynch Keith2

Affiliation:

1. CARBO Ceramics

2. ConocoPhillips

Abstract

Abstract The combination of multistage hydraulic fracture treatments with horizontal drilling technology has been the primary driver to the successful development of resource plays. More than 85% of wells drilled in North America today employ these methods. However, while these technologies have been wildly successful, only recently has the industry begun to address in earnest, the efficiency of current practices. These completion and development optimization efforts require an understanding of which portions of the reservoir have not been adequately contacted/stimulated and are thereby failing to contribute to production, and ultimate hydrocarbon recovery. Understanding where the proppant is located, both near- and far-field, is the starting point for these evaluations, and is the basis for this paper. Traditional fracture mapping technologies provide indirect estimates of fluid distribution within the fracture network. However, there is little direct correlation between fluid distribution and proppant location, and since most unpropped portions of fractures rapidly collapse, identification of the proppant location better represents the region which contributes to ultimate recovery. Near-wellbore detection of proppant can provide insight into whether all perf clusters (in the case of plug and perf) have received proppant as well as the impacts of proppant overflush. Conversely, accurate determination of far-field proppant placement will affect everything from well and stage spacing, to stage design and refrac candidate selection, and allow significant optimization of diversion techniques. While knowledge of both near- and far-field proppant location is necessary for the industry to overcome the single-digit recovery factors that are now projected in many unconventional plays, far-field proppant detection techniques have been largely absent to date. This paper briefly reviews the current "state of the industry" regarding near-wellbore proppant detection technology. It then presents a novel far-field proppant detection technique which utilizes electro-magnetic differencing and a specialty detectable proppant. This includes a description of the technology as well as the methodology of the technique. In addition, the paper reviews the design and results from a recent (first-ever) field deployment of this technology in a horizontal Permian Basin well. Visualization of the proppant in the far-field is also shown. This paper should be beneficial to all engineers and technologists currently interested in evaluating completion efficiencies as well as fracture stimulation effectiveness. Understanding proppant location in both the near- and far-field regions has significant impact on well spacing, stage and perf cluster spacing, and ultimate recovery from stimulated horizontal wells.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3