Waterflood Sweep Improvement at Prudhoe Bay, Alaska

Author:

Thrasher David1,Nottingham Derek2,Stechauner Bernhard2,Ohms Danielle2,Stechauner Gerda2,Singh Praveen K.3,Angarita Monica Lara1

Affiliation:

1. BP Exploration

2. BP Exploration (Alaska) Inc.

3. BP America Inc.

Abstract

Abstract Waterflood conformance control due to reservoir heterogeneity is a common challenge to many oilfield developments. This paper describes the application at-scale of a thermally-activated polymer particle system (TAP) for improving waterflood sweep efficiency in the Prudhoe Bay field, Alaska. Since 2004, the technology has been successfully deployed 91 times in Prudhoe Bay Unit on the North Slope of Alaska as part of an approved Enhanced Oil Recovery (EOR) program. A total of 1.6 million gallons of chemical polymer particles have been injected into approximately half of the available waterflood patterns. Once the polymer particles activate deep in the reservoir, they provide resistance to water flow in the thief (swept) zones. The treatment design workflow applies a thermal model which accounts for the impact of the temperature distribution in the reservoir on activation of the polymer particles. Challenges associated with performance evaluation of the treatment program in a normal operational setting (as opposed to field trial) have been addressed, particularly in relation to interferences to interpretation resulting from the ongoing application of miscible gas EOR in the waterflood areas. Of the 44 treatments deployed between 2008 and 2012, 22 were sufficiently mature to have performance data which was not adversely impacted by interferences from well work, changes to operating conditions, or miscible gas breakthrough. So far, only one of the 22 patterns has not indicated an incremental oil response, while in two patterns the response had started too recently to be able to extrapolate the overall response magnitude. The analysis showed overall positive responses from the treatments that are competitive with other well work on cost/bbl and project economics. Results from this study provide insights on key controls on waterflood sweep improvements, and inform future candidate selection and optimization of treatment designs. The production performance analysis was corroborated by wellhead injectivity, repeat pressure fall-off tests, and reservoir modeling. This paper documents a good case history of waterflood sweep improvement.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3