Malaysia’s First Real-Time Fiber Optic Logging with High-Fidelity Distributed Acoustic and Temperature Survey Conveyed Via Slickline: A Solution for Uncertain Downhole Integrity Condition

Author:

Shahril Shakri Shaifi1,Mohd Johan Mohd Alham1,Mohd Munir Dayang Nuriza Z.1,Mamat Muhamad Aasif1,Paul Benton1,Ahmad Azhari Ahmad Hafiz2,Zainal Abidin Nurbaizura2,Hashim Haziq2,Mahue Veronique3,Pouladi Behzad3,Dawson Peter3

Affiliation:

1. EnQuest Petroleum Production Malaysia Ltd

2. Neural Oilfield Service Sdn. Bhd

3. Silixa Ltd

Abstract

Abstract One of the challenges for brownfield operators managing over 20 year-old wells is the uncertainties of well integrity impacting the effort to access the remaining oil in place. EnQuest known as the operator of choice for maturing and underdeveloped hydrocarbon assets, sees this challenge as an opportunity to grow by exploring the best approach in the market to meet our objective. This paper presents one of EnQuest’s wells that may have a crossflow interzone between water to the oil bearing reservoir. Well ‘Z’ is a single oil producer completed in 1997 but shut in since 2001 due to a high water cut. This well produces from three zones namely A, B and C. Zone A is expected to produce oil but well test results showed a 100% water cut. Offset well suggest the water bearing is contributed by Zone B. The High-fidelity Distributed Acoustic and Temperature Survey (‘DAS’ and ‘DTS’) was evaluated to determine the possibility of crossflow behind the casing. The unique data solution using a combination of DAS and DTS technology based on engineered fibers, allowed for continuous and wide coverage logging of the well. Real-time data acquisition and displays of the entire wellbore led to a better understanding of the well’s dynamic and transient behavior and ultimately to a rapid and complete well integrity assessment. The abnormal fluid movement detection during shut-in was achieved through the highly sensitive sensor array, within the low acoustic frequency range, something conventional logging techniques would have missed. This service was deployed via a normal slickline unit with additional hardware required for real-time monitoring. Twelve hours of data were recorded, under a baseline shut in condition, followed by a flowing condition and then a hard shut-in. Real-time data processing and interpretation were performed onsite during logging operations by a service provider’s experts. An unexpected result was discovered with the water contribution identified as coming from Zone B through a leaking Sliding Sleeve Door (‘SSD’) which was in a closed position, as cyclic liquid movements inside the tubing originating from Zone B and past Zone A were detected and tracked from a low frequency DAS signal. Moreover, clear acoustic activity was measured at two gas lift orifice valves during the shut-in condition; these were likely allowing the passage of the reservoir fluids into the annulus. Finally, during flowing condition, all production clearly showed that crossflow originated from Zone B to A, by both DTS and DAS measurements. This explained the water production observed at the surface. Results obtained were well received and immediate was planned action to isolate the water source resulting in 0% water produced afterwards establish movement via slow strain DAS and noise logging analysis.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3