Novel Insights into Low Salinity Water Flooding Enhanced Oil Recovery in Sandstone: The Clay Role Study

Author:

Al-Saedi Hasan N.1,Brady Patrick V.2,Flori Ralph3,Heidari Peyman3

Affiliation:

1. Missouri University of Science and Technology, Missan Oil Company

2. Sandia National Laboratories

3. Missouri University of Science and Technology

Abstract

Abstract The ever-growing global energy demand and natural decline in oil production from mature oil fields over the last several decades have been the main incentives to search for methods to increase recovery efficiency. This paper quantifies the clay role and the important role of pH in the water flooding of low salinity water in sandstone with and without clays as a function of temperature. Four chromatography columns containing different amounts of sand, illite, and kaolinite (100% sand; 5% Illite, 95% sand; 5% kaolinite, 95% sand; 2.5% Illite, 2.5% kaolinite, 95% sand) were water flooded with various salinities at four different temperatures 25, 70, 90 and 120 °C. Effluent concentrations of Ca2+ and CH3COO−, and pH were measured. The system was pre-aged for a week at 70 °C with 0.01 molar (M) sodium acetate to simulate the bonding of oil-bound carboxylic acids with the reservoir. Desorption of carboxylic groups from reservoir clay surfaces is thought to be an important control over low salinity EOR water injection and its extent should depend on pH. To quantify the impact of the presence of the clay, a clay-free sample was also used, the acetate release and Ca2+ desorption were in some cases higher than those observed in non-clay free samples. Typically, cores with higher clay content saw a great rise in pH, but the clay-free samples also saw a rise in pH, as great as that of the clay-containing cores.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3