Activating Shale to Form Well Barriers: Theory and Field Examples

Author:

Kristiansen Tron Golder1,Dyngeland Torill1,Kinn Sigurd1,Flatebø Roar1,Aarseth Nils Andre1

Affiliation:

1. Aker BP

Abstract

Abstract Shale is a general term used for argillaceous (clay-rich) rocks which are the most abundant sediment on the earth. It is believed that clay rich rocks comprise more than 50-75% of the geologic column. Shale has very varying petrophysical and mechanical properties. Shale is in the most cases acting as a trap or seal for hydrocarbon migration, but has also in more recent years been targeted as a reservoir target in some basins. In some wells it has been observed on cement bond logs that shales in uncemented intervals have moved in and closed the annulus. Pressure communication testing has been performed on these sections and the sections has been qualified as well barrier elements (Williams et al., 2009) for plug and abandonment (P&A) purposes. The main mechanism behind the deformation process is believed to be shale creep. In this paper we will discuss shale creep and other shale deformation mechanisms and how an understanding of these can be used to activate shale that has not contacted the casing yet to form a well barrier. We have developed a numerical model based on first order principles to better understand the mechanical deformation process. We are also supporting the modeling results with laboratory experiments, before we discuss a couple of field cases where shale intervals have been activated and verified to have formed a well barrier as part of the well construction process in new wells.

Publisher

SPE

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3