In-Situ Wettability Determination Using Magnetic Resonance Restricted Diffusion

Author:

Al Yaarubi Azzan,Cao Minh Chanh1,Bachman Nate1,Valori Andrea1,Guntupalli Suryanarayana2,Al Hadidi Khalsa2

Affiliation:

1. Schlumberger

2. Petroleum Development Oman

Abstract

Abstract Wettability is a critical reservoir and petrophysical evaluation parameter that is often ignored. Both disciplines often assume the formations are water-wet for simplicity and because wettability measurement on cores often carries a high degree of uncertainty. With the expansion of unconventional carbonate reservoirs development and interest in enhanced oil recovery (EOR), the importance of understanding wettability at the native state and its variability with various injection fluids is becoming critical. For practical purposes, a fast and accurate determination method, ideally at in-situ conditions, is desired. It is widely recognized that nuclear magnetic resonance (NMR) is very sensitive to the strength of the fluid-rock interactions, and therefore, has been long considered as a good candidate for wettability determination. The NMR methodology was first applied in the laboratory using T2 relaxation measurements. For instance, sample wettability is inferred from a shift of the oil peak to shorter T2 values compared with the bulk T2 response of a live oil in the case of oil-wet system. The main practical limitation to the applicability of the T2 shift-based evaluation of wettability is the usually poor separation of oil and water peaks in the T2 spectrum. Furthermore, the bulk T2 of live oils must be measured and the core sample must be perfectly cleaned to quantify the NMR surface relaxation effect. Recently, a method based on two-dimensional mapping of NMR diffusion versus T2 was developed and validated with Amott-Harvey and USBM lab measurements. This method has two advantages. First, separation between the oil and water signals is greatly improved compared with the one-dimensional T2. Second, key properties such as tortuosity, represented by the electrical cementation factor m, and effective surface relaxivity can be inferred from the two-dimensional NMR maps using the restricted-diffusion model. The wettability index can then be estimated from the effective surface relaxivities. The laboratory results on cores suggest that it is possible to obtain reservoir wettability using downhole NMR measurements. This requires high-resolution, high signal-to-noise ratio (SNR) data and improved processing techniques to separate oil and water signals. We examined the NMR restricted-diffusion wettability technique utilizing log data collected in an observation well completed with plastic casing. This well is used to monitor oil desaturation during different phases of an EOR pilot consisting of water, alkaline surfactant (ASP), and polymer floods. A downhole NMR tool that simultaneously records T1, T2 and diffusion at multiple depth of investigation (DOI) was used. This device allowed to periodically collect high-quality NMR data with SNR higher than 50. The targeted reservoir is a sandstone containing hydrocarbon with viscosity of 90 cP. The computed wettability consistently showed mildly oil-wet condition at the selected depth and over the analyzed time intervals.

Publisher

SPE

Reference20 articles.

1. Al-Muthana, A.S., Hursan, G.G., Ma, S.M., Valori, A., Nicot, B., and Singer, P.M., 2012. Wettability as a Function of Pore Size by NMR, Paper SCA2012-031 presented at the International Symposium of the Society of Core Analysts, Aberdeen, Scotland, UK, 27–30 August

2. Al-Yaarubi, A. H., Edwards, J., Guntupalli, S., 2015. Field Experience of NMR Logging through Fiber Reinforced Plastic Casing in an EOR Observation well. Presented at the SPWLA 56th Annual Logging Symposium, Long Beach, California, USA, July 18–22.

3. Observations relating to the Wettability of porous Rock;Amott;Transactions of the AIME,1959

4. "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments;Carr;Physical Review,1954

5. Wetting alteration of solid surfaces by crude oils and their asphaltenes;Buckley;Revue de l'Institut Français du Pétrole,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3