ASP System Design for an Offshore Application in La Salina Field, Lake Maracaibo

Author:

Hernández Clara1,Chacón Larry J.1,Anselmi Lorenzo1,Baldonedo Abel2,Qi Jie3,Dowling Phillip C.3,Pitts Malcolm J.3

Affiliation:

1. PDVSA-INTEVEP

2. PDVSA-EP

3. Surtek Inc.

Abstract

Summary La Salina Field, on the eastern coast of Lake Maracaibo, Venezuela, was designated as a Laboratorio Integrado de Campo (Integrated Field Laboratory, or IFL) by PDVSA to evaluate the potential application of different EOR processes. One of the main goals at La Salina IFL was to evaluate the alkaline-surfactant-polymer (ASP) technology potential in an oil reservoir near the end of its waterflood life. La Salina produces a medium-gravity crude oil (25°API) from the LL-03/Phase III Miocene reservoir at 915 m (3,000 ft). The feasibility of applying the ASP technology was based on a series of experiments including fluid compatibility, chemical thermal stability, phase behavior, interfacial tension between crude oil and ASP solution, chemical retention by the porous media, and physical simulation with reservoir core samples. The laboratory design involved 23 commercial surfactants, five polymers, and two alkalis. Interfacial tension reductions in excess of 25,000-fold were observed for a variety of ASP solutions. Type II- and Type III phase behaviors were observed. Linear coreflood results indicate that high-molecular-weight, partially hydrolyzed polyacrylamide polymers can be injected into La Salina sand. Radial sandpack floods produced an average oil recovery of 45.6% original oil in place (OOIP) with water injection. Injection of 30% pore volume of ASP solution, followed by 30% pore volume of polymer drive solution, produced (on average) an additional 24.6% OOIP for an average total oil recovery of 70.2% OOIP. The design of the injection plant for La Salina is a challenging task because this will be the first offshore application of the ASP technology in the world. The initial decision for the plant design was to use an existing platform instead of a barge for the construction of facilities. As a result, critical parameters such as treatment sequence, equipment footprint, and storage space for injected and treatment chemicals were considered. Preparation and transport of a phase-stable ASP solution through the injection lines and into the reservoir are crucial. Designed chemical concentrations and physical characteristics must be maintained.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3