Steam Conformance along Horizontal Well with Different Well Configurations of Single Tubing: An Experimental and Numerical Investigation

Author:

Dong Xiaohu1,Liu Huiqing1,Lu Ning1,Wu Keliu1,Wang Kun2,Chen Zhangxin2

Affiliation:

1. China University of Petroleum (Beijing)

2. University of Calgary

Abstract

Summary Dual-pipe steam injection technique has currently demonstrated technical potential for improving heavy oil recovery. It can effectively delay the occurrence of steam fingering and homogenize the steam injection profile along the horizontal wellbore. In this paper, first, we built a cylindrical wellbore physical model to experimentally study the steam injection profiles of a single-pipe horizontal well and a concentric dual-pipe horizontal well. Thus, the heat and mass transfer behavior of steam along the horizontal wellbore with a single-pipe well configuration and a dual-pipe well configuration was addressed. Subsequently, considering the effect of pressure drops and heat loss, a semianalytical model for the gas/liquid two-phase flow in the horizontal wellbore was developed to numerically match the experimental observation. Next, a sensitivity analysis on the physical parameters and operation properties of a steam injection process was conducted. The effect of the injection fluid type was also investigated. Experimental results indicated that under the same steam injection condition, an application of dual-pipe well configuration can significantly enhance the oil drainage volume by approximately 35% than the single-pipe well configuration. During the experiments, both a temperature distribution and liquid production along the horizontal wellbore were obtained. A bimodal temperature distribution can be observed for the dual-pipe well configuration. From this proposed model, an excellent agreement can be found between the simulation results and the experimental data. Because of the effect of variable mass flowing behavior and pressure drops, the wellbore segment close to the steam outflow point can have a higher heating radius than that far from the steam outflow point. From the results of sensitivity analysis, permeability heterogeneity and steam injection parameters have a tremendous impact on the steam injection profile along the wellbore. Compared with a pure steam injection process, the coinjection of steam and noncondensable gas (NCG) can improve the effective heating wellbore length by more than 25%. This model is also applied to predict the steam conformance of an actual horizontal well in Liaohe Oilfield. This paper presents some information regarding the heat and mass transfer of a dual-pipe horizontal well, as well as imparts some of the lessons learned from its field operation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3