Polymer Injection in Heavy Oil Reservoir under Strong Bottom Water Drive

Author:

Al Azri N..1,Jamal E..1,Murshidi A..1,Al Mahrouqi A..1,Al Busaidi I..1,Kazzaz A..1,Al Ajmi W..1,Ramalingam S..1,De Kruijf A..1,Al Kharusi B..1,Brooks D..2

Affiliation:

1. Petroleum Development Oman

2. Shell Technology Oman

Abstract

Abstract Implementing Enhance Oil Recovery techniques in heavy oil reservoirs with strong bottom water drive has been a challenge in the oil industry. This paper describes an Enhanced Oil Recovery process in which polymer is injected into a clastic reservoir with a strong bottom aquifer drive bearing heavy-oil (250-500 cP). The high reservoir permeability (2-5 Darcy) enables stretching the viscosity limit of a standard polymer application. The presence of a strong bottom aquifer maintains high reservoir pressure, which could provide a challenge to injectivity. The close proximity of injectors to the oil water contact reduces the efficiency of the polymer flood through water fingering, and polymer loss to the aquifer. To best understand details of the influence of aquifer on the recovery process, test different development scenarios and address key uncertainties, detailed simulation study was conducted. The simulation results showed that the optimum development concept which would help reduce impact of polymer loss to the aquifer would be to utilize the currently existing and future horizontal producers, augmented with additional infill horizontal injectors placed approximately mid-way in the oil column. Optimization of the development was performed using the simulation model where the polymer viscosity, slug size, and injector location were optimized for net present value. Uncertainty analysis using the simulation model showed that factors such as poor injectivity, poor conformance control and high kv/kh ratio have negative impact on process efficiency. To address and mitigate these key risks and uncertainties a number of activities are underway. These activities include intensive laboratory tests, field injectivity test and a field trial where polymer is injected in newly drilled injectors. The paper discusses study to identify the optimum development concept, key uncertainties and associated risk reduction activities. Finally, this paper discusses the design and the surveillance aspects of the upcoming field trial.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3