Experimental Analysis of Optimal Thermodynamic Conditions for Heavy-Oil/Bitumen Recovery Considering Effective Solvent Retrieval

Author:

Moreno-Arciniegas Laura1,Babadagli Tayfun1

Affiliation:

1. University of Alberta

Abstract

Summary Light-hydrocarbon solvent injection is an effective process to improve heavy-oil/bitumen recovery from oil sands. In this process, oil production is achieved by gravity drive, which is enhanced through the dilution of oil by injected solvent. However, solvent retrieval is one of the major economic concerns in defining the viability of this technique. In this research, a sandpack experimental study was conducted, and the solvent retrieval was determined on the basis of thermodynamic conditions and fluid characterization. Two heavy-oil samples (8.6°API and 10.28°API) from different fields in Alberta, Canada, and four light-hydrocarbon solvents (propane, n-hexane, n-decane, and distillate hydrocarbon) were used in this experimental scheme. Results showed that solvent retrieval increases when light-hydrocarbon solvents (propane and distillate hydrocarbon) are used compared with solvent with high molecular weight (n-hexane and n-decane). Temperature and pressure highly influenced the solvent retrieval. The percentage of solvent retrieval increased when the hydrocarbon solvent was closer to the vapor phase (dewpoint). However, oil recovery showed significant reduction when propane and n-hexane were injected because of high asphaltene deposition on the sandpack. The maximum solvent retrieval was calculated to be nearly 98% at 120°C and 698.47 kPa when propane-and-distillate hydrocarbon was used as solvent. Formation damage, on the other hand, may increase when propane is used as solvent because of the high asphaltene deposition.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3