Mitigation of Vortex-Induced Vibration in Offshore Structures

Author:

Majumdar Ananya1,Adhikary Biplab Ranjan1

Affiliation:

1. J. Ray McDermott, Chennai, Tamil Nadu, India

Abstract

Vortex-induced vibration (VIV) study of any offshore structure is of paramount importance to check the structural stability. VIV poses a significant concern for these structures, as the excessive vibration can lead to fatigue damage and structural failure. Mooring lines, risers, pipelines, and other attachments can also get damaged in case of offshore structures. When the shedding frequency approaches the structure's shedding frequency, these vibrations can be major and perhaps dangerous. VIV can occur at low as well as high Reynold's number regime. Because of rising demand for crude oil, offshore gas, and oil, exploration has been shifted to deeper sea levels. Offshore floating wind turbines are used to conserve energy and generate electricity. It can further help to reduce visual pollution and achieve stronger and more constant winds. Floating offshore wind turbines are considered a viable solution in ocean depths more than 50 to 60 meters and with significant wind resources. As an emerging technology, it can utilize less foundation material, shorten the installation and decommissioning times, and create more wind energy. New dangers can be mitigated by employing commercially available bottom fixed turbines and well-known oil and gas technologies for floaters. VIV can cause large-amplitude vibrations of tethered structures in the ocean. Thus, the effect of VIV on floating structures needs to be studied. The flow-induced response of a floating structure is generally checked for crossflow. In this study a response reduction technique is proposed based on the in-house modelled two-way coupled interaction of fluid and structure due to vortex-induced motion.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3