The Effect of Temperature on Two-Phase Oil/Water Relative Permeability in Different Rock/Fluid Systems

Author:

Esmaeili Sajjad1,Sarma Hemanta1,Harding Thomas1,Maini Brij1

Affiliation:

1. University of Calgary

Abstract

Abstract Two-phase oil/water relative permeability measurements were conducted at ambient and high temperatures in two different rock-fluid systems; one using a clean Poly-Alpha-Olefin (PAO) oil and the other with Athabasca bitumen. The tests were performed in a clean sand-pack with the confining pressure of 800 psi, using deionized water as the aqueous phase. Both the JBN method and the history match approach were utilized to obtain the relative permeability from the results of isothermal oil displacement tests. The contact angle and IFT measurements were carried out to assess any possible wettability alteration and change in fluid/fluid interaction at higher temperatures. Results, Observations, Conclusions: The results of the clean system using the viscous PAO oil confirmed that the two-phase oil/water relative permeability in this ultra-clean system is practically insensitive to the temperature. The slight variation in oil endpoint relative permeability, especially at ambient condition, was attributed to variations in the packing of sand. It was found that the history matching derived two-phase relative permeability from the highest temperature test provides reasonably good history matches of the other displacements that were conducted at lower temperatures. In addition, it is shown that the JBN approach based relative permeability curves show larger variations, primarily due to insufficient volume of water injection at lower temperatures, which makes the practical residual oil saturation much higher than the true residual. In contrast with the ultra-clean system, the results obtained with bitumen showed much larger variations in relative permeability with temperature. Most of the reported studies involving history matching approach treat the low-temperature measurements as the base case and show that changes in relative permeability are needed to history-match the tests at higher temperatures. We have shown that the displacement done at the highest temperature provides a more reliable estimate of the relative permeability and, in some cases, this relative permeability can successfully history match tests done at lower temperatures. In view of the impracticality of injecting sufficient water to reach close to real residual oil saturation at low temperatures, it would be better to obtain relative permeability data at high temperatures for characterizing the two-phase flow behavior of viscous oil systems.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3