In-Depth Permeability Control by Adsorption of Soft Size-Controlled Microgels

Author:

Chauveteau Guy1,Tabary Rene1,Le Bon Christel1,Renard Michel1,Feng Yujun1,Omari Aziz2

Affiliation:

1. IFP

2. U. of Bordeaux

Abstract

Abstract Injecting stable, preformed microgels as relative permeability modifiers to reduce water production minimizes the risk of well plugging or the absence of efficiency inherent to a technology based on in-situ gelling. Recent investigations showed that microgels formed by crosslinking a polymer solution under shear are soft, size-controlled, quasi-insensitive to reservoir conditions, stable over long periods of time and can control in-depth permeability by adsorbing onto all types of rock surface. The new laboratory studies reported in this paper aimed at knowing how to control the kinetics of crosslink formation by ionic strength and at determining the role the interactions between microgels on their propagation in porous media. The reported experiments include:gelling tests at different ionic strengths,measurements of viscoelastic properties of solutions,determination of both microgel density and microgel-microgel interaction parameter for different conditions of stabilization,the relation between the interaction parameter and the mode of adsorption of microgels. Partly attractive microgels were found to adsorb by forming multilayers and thus to induce drastic permeability barriers. Fully repulsive microgels adsorb as a monolayer and propagate easily in porous media at long distances depending only on the quantity of microgel injected. Thus, by controlling both gelling and stabilization processes, microgels can be produced to be either diversion agents or disproportionate permeability reducers to control water permeability at long distances from the wells. Introduction The reduction of water production becomes an increasingly important objective for oil industry, particularly because new environmental regulations impose severe limitations on the disposal of produced water. To reduce water production, a commonly used technique is to inject a polymer solution together with an organo-metallic crosslinker (1,2). The success of such well treatments would imply a good control of the in-situ formation of weak gels capable of reducing water permeability without affecting oil permeability. However, both gelation kinetics and final gel strength are very sensitive to the physico-chemical environment prevailing around the wells (pH, salinity, temperature, shear rates...). Since all these parameters cannot be known with the required accuracy, the results of such well treatments are hardly predictable: no gelling implies no effect on water production whereas the formation of a strong gel can affect drastically well productivity. To minimize these risks inherent to all well treatments based on in-situ gelling, we proposed to use soft, size-controlled "microgels" formed and stabilized before injection (3–6). Such microgels can be prepared on-site in a unit specifically designed to control precisely both shear rate during gelling and physico-chemical conditions. Ideally, microgels designed for water shutoff or profile control should be:insensitive to shear and reservoir physico-chemical conditions,size-controlled to prevent face plugging,small enough to ensure an in-depth treatment and large enough to reduce significantly water permeability,soft enough to be collapsed onto pore wall by capillary pressure in presence of oil flow in order to be disproportionate relative permeability modifiers,strongly adsorbing onto pore surface and stable over time, andnon-toxic for the environment. Using non-toxic crosslinkers was a strong incentive to investigate the gelling properties of zirconium complexes (9–21). The main aim of this study was to improve the conditions of microgel formation and stabilization in order to obtain the properties required for different types of water shut-off operations. In the first section are described new gelling experiments carried out to elucidate the role of electrostatic forces on crosslinking kinetics. In the second section, the viscoelastic properties of microgel solutions are analyzed, giving information on the deformability of microgels under hydrodynamic forces. In the third section, the relation between the Huggins constant (a commonly used interaction parameter) and the propagation of microgels in porous media is established. In the fourth section, the behavior in porous media of fully repulsive microgels has been investigated. Finally, the main conclusions as well as the perspectives are drawn.

Publisher

SPE

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3