A Robust Method to Quantify Reservoir Connectivity Using Field Performance Data

Author:

Krasnov V..1,Ivanov V..1,Khasanov M..2

Affiliation:

1. OAO NK Rosneft

2. Gazpromneft

Abstract

Abstract An improved method of well-to-well connectivity evaluation is proposed. The method is based on combination of two approaches developed by now - capacitance model (CM) and Multiwell Productivity Index (MPI). Multiwell productivity index is evaluated independently of production data basing on well location geometry and average reservoir properties. Connectivity coefficients, derived from MPI are used as constrains when searching for CM solution. Following the physical meaning of the problem the capacitance model is improved by adding a constraint which was possibly overlooked by previous researches. These improves convergence of optimization problem which is inherent part of CM algorithm and enables to apply it to evaluate waterflood for real reservoir with more than 60 wells. An injection and production rates as well as bottom-hole pressure data can yield a lot of valuable information about well interaction and therefore, reservoir characteristics, if they are analyzed properly. For example, such analysis can reveal a preferential flow direction throughout the field or quantify interaction of injector to surrounding producers that enables to reduce ineffective water circulation. Proposed method combines CM and MPI approaches which both got their own advantages and drawbacks. Capacitance Model provides quite detailed analysis and quantifies the well interaction. Thus, it allows us to learn more about the reservoir structure as well as to optimize the waterflood, but it turns out to be unstable when applied to real data. Also it misses an important constraint connected with a physical meaning of CM parameters. The stability of CM can be increased by using an MPI approach. To this effect, we use analytical MPI values in construction of a regularizing functional within the CM's algorithm. The method was applied to one of Rosneft fields to establish well interaction pattern. Recommendations were given to improve waterflood efficiency.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applying CRM Model to Study Well Interference;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2018-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3