Integration of Cutting Spectroscopy Analysis and Open-Hole Logs to Increase Evaluation Certainty of Complex Clastic Formations – Advantages and Limitations

Author:

Alqunais Ali1,Bradford Charles1,Qubaisi Khalid1

Affiliation:

1. Saudi Aramco

Abstract

Abstract This paper presents an approach by integrating advanced cutting analysis, such as x-ray fluorescence (XRF), and open-hole logs for enhanced formation evaluation of complex clastic formations in near real-time. To verify the methodology, results of surface cuttings analyses are compared to and validated with downhole elemental spectroscopy measurements. In general, when the formation contains clays, the minimum logging requirement to evaluate clastic formations is a triple combo (density, neutron and resistivity) with spectral gamma ray (SGR) logs. In addition to correcting the impact of the drilling fluid additives and properties such as the presence of k-formate in mud, SGR logs become very crucial to differentiate clay types present in the formation. In the absence of SGR, advanced cuttings measurements can be utilized to provide elemental data of major elements including SGR components from the cuttings in near real-time. A comparison was made to evaluate the cuttings analysis as a replacement for SGR. As a part of this work and to validate the petrophysical evaluation results, downhole wireline SGR and elemental spectroscopy data were acquired and compared to the analysis using advanced cutting measurements. This work was conducted in a siliciclastic formation containing abrasive sandstones of mixed clean quartz and clay minerals. The analysis of cuttings XRF was integrated with basic downhole logs to quantify the clay typing required for representative formation evaluation and well geosteering. Limitations of this approach are identified in drilling complex clastic formations including cutting sampling frequency and effects of drilling including drilling fluid contamination, mud additives, drilling parameters and drilling driving mechanism. Controlling these factors has led to good results from cuttings measurements. The advanced cuttings XRF analysis was benchmarked with wireline SGR and elemental spectroscopy logs. This approach of using cuttings XRF analysis and basic open-hole logs is a valid option for geosteering in a complex clastic mineralogy formation and providing a near real-time formation evaluation in the absence of spectral gamma ray or elemental spectroscopy. XRF has been proven to provide near real-time analysis with improved reliability across bad hole, wider spectrum of elements and eliminate critical operations risk. Recommendations to optimize the parameters for reliable measurements will be discussed in this paper.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3