Effect of Confinement on Pressure/Volume/Temperature Properties of Hydrocarbons in Shale Reservoirs

Author:

Pitakbunkate T..1,Balbuena P. B.1,Moridis G. J.2,Blasingame T. A.1

Affiliation:

1. Texas A&M University

2. Lawrence Berkeley National Laboratory

Abstract

Summary Shale reservoirs play an important role as a future energy resource of the United States. Numerous studies were performed to describe the storage and transport of hydrocarbons through ultrasmall pores in the shale reservoirs. Most of these studies were developed by modifying techniques used for conventional reservoirs. The common pore-size distribution of the shale reservoirs is approximately 1 to 20  nm and in such confined spaces that the interactions between the wall of the container (i.e., the shale and kerogen) and the contained fluids (i.e., the hydrocarbon fluids and water) may exert significant influence on the localized phase behavior. We believe this is because the orientation and distribution of fluid molecules in the confined space are different from those of the bulk fluid, causing changes in the localized thermodynamic properties. This study provides a detailed account of the changes of pressure/volume/temperature properties and phase behavior (specifically, the phase diagrams) in a synthetic shale reservoir for pure hydrocarbons (methane and ethane) and a simple methane/ethane (binary) mixture. Grand canonical Monte Carlo (GCMC) simulations are performed to study the effect of confinement on the fluid properties. A graphite slab made of two layers is used to represent kerogen in the shale reservoirs. The separation between the two layers, representing a kerogen pore, is varied from 1 to 10  nm to observe the changes of the hydrocarbon-fluid properties. In this paper, the critical properties of methane and ethane as well as the methane/ethane mixture phase diagrams in different pore sizes are derived from the GCMC simulations. In addition, the GCMC simulations are used to investigate the deviations of the fluid densities in the confined space from those of the bulk fluids at reservoir conditions. Although not investigated in this work, such deviations may indicate that significant errors for production forecasting and reserves estimation in shale reservoirs may occur if the (typical) bulk densities are used in reservoir-engineering calculations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3