A Thermodynamic Model for Prediction of Solubility of Elemental Mercury in Natural Gas, Produced Water and Hydrate Inhibitors

Author:

Lim Lay Tiong1,Sørensen Henrik2,Leekumjorn Sukit3,Pottayil Adil1

Affiliation:

1. Calsep Asia Pacific Sdn. Bhd.

2. Calsep A/S

3. Calsep Inc.

Abstract

Abstract When it comes to mercury (Hg) there are strict regulation around health, safety and environment, and the level of Hg in discharge water. Further, Hg can potentially compromise the integrity of materials anywhere in the flow path of the produced fluid. Real-time onsite Hg monitoring presents health hazard from exposure to Hg and can also be economically prohibitive. Therefore, it is desirable to be able to reliably simulate Hg partitioning between the vapor, liquid hydrocarbon, and water phases. It is further of interest to evaluate potential Hg condensation when the produced fluid flows from the reservoir through flow lines and passes through process equipment. Commercial compositional reservoir, process and flow simulators employ models with different levels of complexity. It is desirable to be able to make consistent simulations across various simulation platforms using the same equation of state models and model parameters. In this work we present self-contained sets of parameters for use with the original formulations of the Peng-Robinson modification from 1978 and the Soave-Redlich-Kwong equations of state. We aim at using the lowest possible level of complexity of binary interaction parameters. We further give the acentric factors for the original Peng-Robinson equations of state from 1976 giving the same results as when using the Peng-Robinson modification from 1978. The model covers various hydrocarbon components and inorganic gases, H2O, and common hydrate inhibitors. The work is based upon and ties together the experimental and modelling work of others and supplemented with new model parameters where required. We further summarize the accuracy of the model and briefly touch upon how the model extrapolates beyond the limits of data used in this work.

Publisher

SPE

Reference20 articles.

1. DIPPR 801 Database;AIChE

2. Elemental mercury partitioning in high pressure fluids: Part 1: Literature review and measurements in single components;Chapoy;Fluid Phase Equilibria,2020

3. Elemental mercury partitioning in high pressure fluids: Part 2: Model validations and measurements in multicomponent systems;Chapoy;Fluid Phase Equilibria,2020

4. Corns, W. T., de Feo, G. and Dexter, M. A. 2020. Solubility of Mercury in Selected Gas Processing Solvents. GPA Res. Rep. RR-246. https://gpamidstream.org/publications/item/?id=4486

5. Physical and thermodynamic properties of pure chemicals: data compilation;Daubert,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3