Oxidation of Crude Oil in Porous Media

Author:

Bousaid I.S.1,Ramey H.J.1

Affiliation:

1. Texas A And M U.

Abstract

Abstract Experimental results on the oxidation reaction kinetics in the forward combustion oil recovery process are presented. A total of 48 runs were made wherein a stationary thin layer of coked, unconsolidated sand was burned isothermally in a combustion cell. Individual runs were made at various temperature levels to permit determination of the effect of temperature upon the reaction. An expression was obtained for the burning rate of carbon as a function of carbon concentration, combustion temperature and oxygen partial pressure. The carbon burning rate for two types of crude oil indicated a first order reaction with respect to both carbon concentration and oxygen partial pressure. The effect of combustion temperature on the reaction rate constant matched the Arrhenius equation. The activation energy was similar for the two crude oils examined. The activation energy decreased for a porous media containing clay. The rate of oxidation of crude oil at reservoir temperature was found to be significant. Other significant findings included information on hydrogen-carbon content of fuel residues, fuel reactivity and the products of combustion. Introduction The production of crude oil by underground combustion has been studied in the laboratory by many investigators. Results of laboratory and field experiments have been reported in the literature describing the forward combustion process. But as yet, no qualitative or quantitative study of the kinetics of fuel combustion involved in this process has been reported. The fuel concentration and the rate at which fuel is burned at the front are important factors governing the air requirement in a forward combustion operation. Although the fuel is essentially unrecoverable crude, the air required to burn the fuel is an important economic factor in this process. Because fuel is burned, the heat transport associated with forward combustion is a key and unique feature of this new oil recovery method. Many investigators have presented information on the heat transmission and fluid mechanics involved in forward combustion. Berry and Parrish demonstrated the utility of considering reaction kinetics in reverse burning. From differential thermal analysis, Tadema presented a qualitative discussion of the nature of reactions between oil and oxygen in combustion oil recovery. Although little quantitative work has been done on be reaction kinetics involved in forward combustion oil recovery, an extensive literature does exist on combustion of carbons and oils, and carbonaceous residues from cracking catalyst pellets. Dart, et al., studied the combustion rate for oxidation of carbonaceous residues on clay catalyst pellets, and found the reaction to be second-order with respect to carbon concentration, and first-order with respect to oxygen partial pressure for carbon concentrations less than 2 weight percent of the catalyst weight. The reaction appeared to be first-order with respect to carbon concentration for concentrations greater than 2 percent. Metcalfe noted that other workers had found that aging of the fuel during the combustion process was responsible for changing coke properties, and A accounted for the apparent second-order carbon concentration effect found by Dart, et al. It appears that burning of residues from cracking pellets is first-order with respect to both carbon concentration and oxygen partial pressure. Dart, et al., also observed that hydrogen in the hydrocarbon residue appeared to react faster than the carbon. Lewis, et al., studied oxidation of charcoal, coke and graphite in a fluidized bed. Gas velocities were high enough to partially lift and circulate the carbon particles. Their results indicated first-order reaction dependency with respect to both carbon concentration and oxygen partial pressure. SPEJ P. 137ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3