Pipe-Diameter Effect on Liquid Loading in Vertical Gas Wells

Author:

Skopich A..1,Pereyra E..1,Sarica C..1,Kelkar M..1

Affiliation:

1. University of Tulsa

Abstract

Summary The effect of pipe diameter on liquid-loading initiation has been investigated experimentally with pipes having internal diameters of 5.1- (2-) and 10.2-cm (4-in.). Two-phase-flow parameters, such as pressure gradient and liquid holdup, were measured. Flow characteristics were determined by visual observation with a high-speed video camera. Critical gas-flow rate for liquid-loading initiation was identified, and comparisons between the two pipe diameters were presented. The critical superficial-gas velocity corresponding to the minimum pressure gradient was found to be faster for the smaller diameter. When the comparison was carried out in terms of mass-flow rates, critical flow rate for liquid loading in a 5.1-cm (2-in.) pipe was less than that in a 10.2-cm (4-in.) pipe. This verifies the use of velocity strings to extend the production life of the gas wells. Additionally, comparison of the data with available mechanistic-model prediction showed significant discrepancies. Possible reasons for these discrepancies are discussed.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3