Experimental Investigation of Light Oil Recovery from Fractured Shale Reservoirs by Cyclic Water Injection

Author:

Yu Yang1,Sheng James J.1

Affiliation:

1. Texas Tech University

Abstract

Abstract Oil production from tight formations contributed about 49% of total crude oil production in U.S. in 2014 (EIA., 2015). Such amount is expected to grow significantly as the active development of low permeability reservoirs continues. Since primary recovery is becoming less effective and large amounts of oil are locked in matrix, various IOR techniques should be considered to face such challenge. Lots of recent studies evaluated the potential of gas injection in shale plays. However, few authors discussed the feasibility of water huff-n-puff process. This study aims to evaluate the potential of recovery shale oil by using cyclic water injection (CWI) method. Eagle Ford outcrop core plugs were used in this study and re-saturated with crude oil. X-ray diffraction (XRD) technique was employed to analyze the mineral composition of the sample. To reduce clay swelling, we used 5% of potassium chloride (KCl) solution as the injection fluid. Two groups of experiments were performed to examine the effects of soaking time and injection pressure on recovery performance. During the test, core plug was soaked with water under a constant pressure for a certain time, then the surrounding pressure was released to enter the production period. Under the same test conditions, cyclic gas injection (CGI) was conducted for the purpose of comparing two IOR effects. The mineral report shows that the clay content is 7.4 wt% in the sample. The use of clay stabilizer was a necessity when preparing the injection fluid. We present the results of cumulative recovery factor (RF) of each cycle for each test. It was found that soaking time impacts the RF within a certain range, which was similarly concluded from the gas huff-n-puff tests. Injection pressure can significantly affect the recovery performance. For example, after performing 12 cycles of water huff-n-puff, the RF for tests with injection pressures of 1,000 psi and 5,000 psi were 14% and 21%, respectively. When applying 5,000 psi, we observed that fractures were created and the width increased with further cycles operated. Comparing two processes of CWI and CGI, different recovery characters were observed. CWI showed the recovery potential at the first four cycles, and then the yielded oil was dramatically decreased with further cycle performed. By contrast, CGI had a continuous recovery performance that the incremental RF was contributed from each cycle, then gradually diminished after seven cycles of huff-n-puff process.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3