Successful Application of Hot-Water Circulation in the Pelican Lake Field: Results and Analyses of the E29 Hot-Water-Injection Pilot

Author:

Duval Kirk1,Gutiérrez Dubert1,Petrakos Dino1,Ollier Pierre2,Johannson Darren3

Affiliation:

1. Cenovus Energy

2. Majus

3. Majus Canada

Abstract

Summary The Pelican Lake field in northern Alberta (Canada) is home to the first successful commercial application of polymer flooding in higher-viscosity oils (i.e., greater than 1,000 cp), which has opened up new opportunities for the development of heavy-oil resources. The field produces from the Wabiskaw “A” reservoir, which has thin pay (2 to 6 m) and exhibits a significant viscosity gradient across the field, with oil viscosities as low as 600 cp in the existing waterflood and polymer-flood areas to more than 200,000 cp in the current undeveloped “immobile” area. This unique geological feature limits the application of chemical injection to the less-viscous areas of the field and calls for different methods for the heavier accumulations. As a first step to develop alternative technologies capable of recovering oil from heavier areas of the field not ideal for polymer flooding, a Cenovus-designed hot-water-injection pilot began implementation in June 2011. The hot-water-injection scheme was applied to a transition area in which dead-oil viscosity ranges from 3,000 cp to approximately 15,000 cp. It consisted of one horizontal producer supported by two horizontal hot-water injectors, with an injector/producer distance of 50 m for both injectors, and three vertical observation wells equipped to monitor pressure and temperature between one injector and the producer. The pilot was operated in three phases. The first phase consisted of a 6-month primary-production period to obtain a baseline of the pilot performance before hot-water injection. The second phase consisted of hot-water injection through the edge injectors. The third phase consisted of hot-water edge injection accompanied by hot-water circulation in the production well as a means to stimulate oil production. One of the features of this stage is the use of an insulated coiled tubing (ICT), which delivers hot water continuously to the toe of the producer and allows continuous stimulation and uninterrupted oil production. This paper describes the mechanical components of the pilot and discusses the results obtained with an emphasis on the hot-water-circulation process, which has proved to be very effective. Oil production increased from approximately 6 m3/d during the flood stage to more than 25 m3/d during the hot-water-circulation stage and has held relatively steady for more than 2 years. The data captured have been reconciled with analytical and reservoir-simulation models, and results suggest that the technology may help unlock some of the heavier oil accumulations in the field.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3