Integrated Unconventional Shale Gas Reservoir Modeling: A Worked Example From the Haynesville Shale, De Soto Parish, North Lousiana.

Author:

Díaz de Souza O. C.1,Sharp A. J.1,Martinez R. C.2,Foster R. A.2,Simpson M. Reeves2,Piekenbrock E. J.1,Abou-Sayed I.3

Affiliation:

1. BG Group

2. EXCO Resources

3. i-Stimulation Solutions, Inc.

Abstract

Abstract Production from shale gas reservoirs in the USA has become an important component in the increase of natural gas supply. The Haynesville shale, in particular, is a major contributor in gas supply due mainly to its relatively higher initial deliverability compared to other gas shale plays. One of the critical questions in developing a play efficiently and economically is the well spacing. There are several approaches to addressing this question. The paper looks at one approach, namely the process behind building a calibrated, history matched multi well reservoir model. The model is run in prediction mode with different sensitivities to answer the well spacing issue. The model honors the initial static and dynamic conditions, is capable of running in a reasonable time and, most importantly, has been useful to management in the decision making process. In this field case, a half section in the state of Louisiana has been drilled and completed with 4 horizontal multistage producing wells and 2 vertical microseismic monitoring wells, 1 of which was subsequently converted to a downhole pressure monitoring well. During the entire hydraulic fracturing operation, downhole microseismic data were simultaneously recorded in both observation wells. The pressure data from the monitor well acquired during production was entered into the reservoir model as another history matching variable. The microseismic data were used to calculate the fracture parameters and as a limiting constraint in the process. This dual porosity model is a practical example application of the methodology previously described in SPE paper 132180 by Du et al. (2010). The sections in this paper describe a method for building a reservoir model that honors the static boundary conditions. The model was built in two parts according to the Dual Porosity nature of it: a conventional geological model representing the initial porosity and permeability of the rock matrix, and a second part that models the fracture network generated by the stimulation operations and the pre-existing natural fractures. The paper then explains how this model was tuned to enable a production and pressure history match. There is also a section devoted to the generation and utilization of a critical correlation between pressure depletion and a combined fracture half-length times the square root of permeability (Xf.√k) parameter which greatly reduced the uncertainty caused by the non-uniqueness of the match. Finally, some general conclusions regarding the results are presented.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3