Experimental Optimization of Catalytic Process In Situ for Heavy-Oil and Bitumen Upgrading

Author:

Shah Amjad A.1,Fishwick Robert P.1,Leeke Gary A.1,Wood Joseph1,Rigby Sean P.2,Greaves Malcolm3

Affiliation:

1. University of Birmingham

2. University of Nottingham

3. University of Bath

Abstract

Summary The worldwide conventional crude-oil demand is on the rise, and because of the rising prices, unconventional oils are becoming more economically attractive to extract and refine. However, technological innovation is needed if heavier oil supplies are to be exploited further. Toe-to-heel air injection (THAI) and its catalytic add-on processes (CAPRI) combine in-situ combustion with catalytic upgrading using an annular catalyst packed around the horizontal producer well. These techniques offer potentially higher recovery levels and lower environmental impact than alternative technologies (e.g., steam-based techniques). An experimental study is reported concerning the optimization of catalyst type and operating conditions for use in the THAI-CAPRI process. The feed oil was supplied from the Whitesands THAI-pilot trial. Experiments were carried out using microreactors containing 10 g of catalyst, with oil flow of 1 mL/min and gas flow of 0.5 L/min, under different temperatures, pressures, and gas environments. Catalysts tested included alumina-supported CoMo, NiMo, and ZnO/CuO. It was found that there was a trade-off in operation temperature between upgrading performance and catalyst lifetime. At a pressure of 20 bar, operation at 500°C led to an average of 6.1°API upgrading of THAI oil to 18.9°API, but catalyst lifetime was limited to 1.5 hours. Operation at 420°C was found to be a suitable compromise, with upgrading by an average of 1.6°API, and sometimes up to 3°API, with catalyst lifetime extended to 77.5 hours. Coke deposition occurred within the first few hours of the reaction, such that the catalyst pore space became blocked. However, upgrading continued, suggesting that thermal reactions or reactions catalysed by hydrogen transfer from the coke itself play a part in the upgrading reaction mechanism. The CAPRI process was relatively insensitive to changes in reaction-gas medium, gas-flow rate, and pressure, suggesting that the dissolution of hydrogen or methane from the gas phase does not play a key role in the upgrading reactions. By careful control of the temperature and oil-flow rate in the in-situ CAPRI process, additional upgrading compared with the THAI process alone may be effected, resulting in a more-valuable produced oil, which is easier to transport.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3