Numerical Interpretation of Single Well Chemical Tracer Tests for ASP Injection

Author:

de Zwart A. H.1,Stoll W. M.1,Boerrigter P. M.1,van Batenburg D. W.2,Al Harthy S. S.3

Affiliation:

1. Shell Development Oman

2. Shell Global Solutions International BV

3. Petroleum Development Oman

Abstract

Abstract A series of single well injection tests has been conducted to estimate the efficiency of Alkaline Surfactant Polymer (ASP) flooding. These injection tests comprised a Single Well Chemical Tracer (SWCT) test that was done after water injection to establish a baseline remaining oil saturation and a second SWCT test conducted after ASP injection to measure the Remaining Oil Saturation (ROS) after ASP. Analytical methods are generally used to interpret SWCT tests and to determine the remaining oil saturation. These techniques work best when the response is close to an ideal, single peak. However, the responses from the SWCT tests in our single well tests sequences are complex, showing multiple peaks. This is indicative of complicating factors such as cross-flow between layers. To understand the complex response we used numerical simulation techniques to interpret the SWCT tests. The numerical model includes the physics of ASP, such as interfacial tension reduction, water viscosity modification, and the related reduction in ROS as wells as an accurate model for tracer dispersion. The model allows full control of physical dispersion and does not require the use of numerical diffusion to mimic the effect of physical dispersion. The numerical simulation sequence involves the full single well injection test history including SWCT tests before and after the ASP injection. The key challenge in matching the tests results with the numerical simulations was to model the complex response, which was different for each well tested. Elaborate numerical simulations, different from the conventional interpretation method, were used to successfully match all tests. This paper presents the simulation work, an explanation of the parameters varied to obtain agreement between numerically predicted and actual SWCT responses and the numerical simulation tools used to match the SWCT tests.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3