Assessing the Effect of Carbonated Water on the Geochemistry of CO2-Storing-Bed Minerals

Author:

Fani Mahmood1,Puntervold Tina1,Strand Skule1,Mamonov Aleksandr2

Affiliation:

1. University of Stavanger, Norway

2. DTU Offshore, Denmark

Abstract

Abstract Global warming and climate change are influenced by the discharge of carbon dioxide into the Earth's atmosphere. CO2 can be injected into underground storage locations such as depleted oil and gas reservoirs or saline aquifers to reduce emission impacts. Injected CO2 will be located next to the reservoir phases in place: brine, pore surface minerals, and any residual oil. CO2 in brine forms carbonic acid, which could affect the stability of minerals. Short-term and long-term geochemical alteration processes should be screened to improve the understanding of mineral dissolution and in-situ mineralization mechanisms, giving improved quality of the numerical models needed for large-scale simulations. This study investigated the chemical interactions between sandstone, chalk minerals, and carbonated water (CW) at static high-pressure/temperature conditions. Feldspar and carbonate minerals batches with different surface areas were exposed to CW for 1 and 3 months. Fluid properties before and after CW exposure were measured using ion chromatography (IC) and pH tests, and the integrity of the rock grains was studied by scanning electron microscopy (SEM) and a laser diffraction analyzer. Subsequently, the compositions of the exposed minerals were examined using energy-dispersive X-ray spectrometry (EDX). In addition, CW core flooding tests were conducted on outcrop chalk, as chalk was the mineral showing the highest reactivity in the static batch experiments. At the final stage, the static CW exposure test results were modeled by PHREEQC. The results showed that the static batch experiments only revealed minor dissolution effects in chalk after CW exposure. Dynamic core flooding tests using an outcrop chalk core showed that injection of CW can cause higher rock dissolution at the inlet of the core. Exposing reactive minerals to CW can cause chalk dissolution and ionic exchange in feldspars. However considerable changes in sample integrity and grain geometry during the experiments were not observed. PHREEQC modeling made an acceptable match between the experimental and the simulated data. This research shows that the dominant mechanisms between CW and the exposed minerals were ionic exchange and mineral dissolution. When these processes consume CO2, it leads to improved CO2 storage due to increased dissolution trapping. The study's results can be used to assess the integrity of the storing bed minerals after CW exposure.

Publisher

SPE

Reference23 articles.

1. Geochemical Interactions Among Rock/CO2/Brine Systems: Implications for CO2 Geo-Storage;Adila;SPE Gas & Oil Technology Showcase and Conference,2023

2. CO2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment;Al Hameli;Energies,2022

3. Aquifer disposal of CO2: hydrodynamic and mineral trapping;Bachu;Energy Conversion and Management,1994

4. Feldspar;Bowles,1930

5. Feldspars and feldspathoids: structures, properties and occurrences;Brown,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3