Drill Bit Damage Assessment Using Image Analysis and Deep Learning as an Alternative to Traditional IADC Dull Grading

Author:

Ashok Pradeepkumar1,Vashisht Prabal1,Kong Hyeok1,Witt-Doerring Ysabel1,Chu Jian1,Yan Zeyu1,van Oort Eric1,Behounek Michael2

Affiliation:

1. The University of Texas at Austin

2. Apache Corporation

Abstract

Abstract IADC dull bit grading is the current industry standard to assess the condition of a drill bit when it comes out of the hole. It is intended to capture the impact of drilling issues (e.g. drilling abrasive hard rock, drilling dysfunctions) on the bit and to improve future bit selection. However, the grading process is manual and subjective, making the bit grading outcome an inconsistent and unreliable metric. Recent advances in image processing and deep learning allow for bit grading to become more consistent and automated. Such a process is described in this paper. The dataset used in this project consisted of multiple images (taken from different perspectives in a random manner) of used drill bits from 13 bit runs across multiple wells. As a preliminary step in developing the approach, only PDC bits were considered in this project. The first task was to identify all the cutters on a drill bit image using Convolutional Neural Networks (CNN). The CNN approach was chosen since it has shown remarkable success in solving the problem of object detection and classification in other fields. Next, the amount of damage to each cutter was quantified using image processing techniques. Finally, from information gathered in the previous steps, a holistic damage assessment of the drill bit was made. The trained CNN was able to detect the cutters in an image to a high degree of accuracy. The accuracy of cutter detection was further improved through the use of heuristics that predict potential locations of cutters based on blade location and shape. The identification of unique cutters from a group of images of the same bit proved more challenging. Since the images could not be appropriately stitched together, each image was graded independently, and a holistic assessment of the bit was made by aggregation of the individual assessments. Additionally, not all of the cutters identified could be positively identified as damaged or not. For example, if the perspective that was available was at a right angle to the cutter's face, it is inherently not possible to quantify the damage. The computer-generated assessment of the bit was validated with collaborative assessments made by multiple human operators. This paper presents a novel approach to bit damage classification that removes the subjective bias that comes with human evaluations. The application of deep learning techniques to cutter identification, damage detection and quantification is unique and has the potential to significantly improve bit design, selection, and thus, drilling efficiency.

Publisher

SPE

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3