Improved MMP Correlations for CO2 Floods Using Analytical Gasflooding Theory

Author:

Yuan H.1,Johns R. T.2,Egwuenu A. M.2,Dindoruk B.3

Affiliation:

1. PetroTel Inc.

2. U. of Texas at Austin

3. Shell Intl. E&P Corp.

Abstract

Summary Local displacement efficiency from CO2 gas injection is highly dependent on the minimum miscibility pressure (MMP). Correlations are sometimes used to estimate the MMP where the injected fluid may or may not contain impurities such as methane. These correlations, however, are based on a limited set of experimental data and, as such, are not widely applicable. They also do not account accurately for the more complex condensing/vaporizing (CV) displacement process. This paper presents new MMP correlations for the displacement of multicomponent oil by CO2 and impure CO2. The approach is to use recently developed analytical theory for MMP calculations from equations of state (EOSs) to generate MMP correlations for displacements by pure and impure CO2.1–8 The advantage of this approach is that MMPs for a wide range of temperatures and reservoir fluids can be calculated quickly and accurately without introducing uncertainties associated with slimtube MMPs and other numerical methods. The improved MMP correlations are based solely on the reservoir temperature, the molecular weight of C7+, and the percentage of intermediates (C2–C6)in the oil. The MMPs from the improved correlations are compared to currently used correlations and 41 experimentally measured MMPs. Correlations are also developed for impure-CO2 floods, in which the injection stream may contain up to 40% methane. The new correlations are more accurate for a wider range of conditions than the currently used correlations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3