Quantifying Transient Effects in Altered-Stress Refracturing of Vertical Wells

Author:

Roussel Nicolas P.1,Sharma Mukul M.1

Affiliation:

1. The University of Texas at Austin

Abstract

Summary The production or injection of fluids in reservoirs results in a redistribution of stresses. In this paper, the extent of stress reorientation has been calculated for fractured production and injection wells and the results have been analyzed for their effect on refracturing operations. Rules of thumb and charts have been provided to help with candidate-well selection for refracturing on the basis of the study. For previously fractured wells, it is possible to create a secondary fracture that is perpendicular to the first. The secondary orthogonal fracture can be created only within a certain time window that, in turn, depends on the reservoir properties. Conditions leading to orthogonal secondary fractures in different kinds of reservoirs (oil, gas, and tight gas reservoirs) have been analyzed to establish some rules of thumb. The effects of the layers bounding the pay zone and of permeability heterogeneity and anisotropy on stress reorientation are also discussed. Our results allow us to quantify the phenomenon of orthogonal secondary fracturing around fractured production wells by calculating the extent of the stress-reversal region as a function of time. The results of our model are shown to agree qualitatively with field observations obtained from microseismic measurements. The model presented in the study helps to clarify the concept of refracturing and provides a quantitative estimate of the time window for refracturing as a function of dimensionless parameters. The final result demonstrates the potential of the model to increase the reservoir sweep in unconventional reservoirs for which the optimum time window for refracturing is on the order of months to years. The conclusions of this study are useful for the design of refracturing operations and for candidate-well selection.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3