Characterization of Critical Fluid, Rock, and Rock-Fluid Properties-Impact on Reservoir Performance of Liquid-rich Shales

Author:

Honarpour M. M.1,Nagarajan N. R.1,Orangi A..2,Arasteh F..1,Yao Z..1

Affiliation:

1. Hess Corporation, Houston, Texas

2. Maersk Oil Company, Qatar

Abstract

Abstract Liquid-rich Shale (LRS) reservoirs are economically attractive but operationally challenging. Fluid, rock, and rock-fluid properties are critical for optimal reservoir development and management. Formation heterogeneity, fluid variability, and complexity of rock-fluid properties render fluid flow characterization a challenging task. Additional challenges associated with coring, fluid sampling and analysis include the recovery of quality cores and representative fluid samples, and timely acquisition of high quality data for making critical engineering design decisions. Rock and fluid analyses should be done in the following stages so that the critical data become available in a timely manner for making key decisions: a) ‘Wellsite Analysis’ including mineralogy/total organic content, TOC; b) ‘Quick Look laboratory analysis’ for detailed mineralogy and basic petrophysical properties; c) ‘Fast Track’ geomechanical, geochemical properties and petrophysical analysis on core plugs; and d) ‘Full Suite’ rock-fluid analysis for integrated studies. Low formation permeability, long transients, and contamination with OBM and fracturing fluid make acquisition of representative downhole or early surface fluid samples impractical. An alternative approach is to integrate mud gas analysis with light and heavy end components extracted from full diameter cores in canisters to reconstruct in-situ fluids. The PVT modeling should account for the impact of high capillary pressures encountered in unconventional shale reservoirs for reliable reservoir performance prediction. This paper presents the best practice methodology for characterizing critical rock and fluid properties, their variability and their impact on performance through parametric simulation studies. A sector model was constructed consisting of alternate TOC- and calcite-rich layers with a horizontal well placed in a calcite-rich layer. A network of hydraulic and natural fractures was implemented in the model to study the sensitivities to fluid and rock properties, relative permeability, capillary pressure, and fracture properties. It was found that the critical rock and fluid data impacting the initial rate and ultimate recovery were effective permeability, its anisotropy, its alignment with hydraulic and natural fracture network, rock-type based compaction, unconventional PVT behavior such as decreased oil bubble point pressure and the resultant viscosity and GOR behavior, interfacial tension (IFT)/capillary pressure, and relative permeability.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3