Modeling of Gravity-Imbibition and Gravity-Drainage Processes: Analytic and Numerical Solutions

Author:

Bech Niels1,Jensen Ole K.2,Nielsen Birger3

Affiliation:

1. Riso Natl. Laboratory

2. Maersk Oil and Gas A/S

3. Cowiconsult.

Abstract

Summary A matrix/fracture exchange model for a fractured reservoir simulator isdescribed. Oil/water imbibition is obtained from a diffusion equation withwater saturation as the dependent variable. Gas/oil gravity drainage andimbibition are calculated by taking into account the vertical saturationdistribution in the matrix blocks. Introduction In most simulators intended for naturally fractured reservoirs, the fractureand matrix systems are considered to be two overlapping media. Flow between thetwo is described in various ways by means of source and sink terms. Thedescription of the matrix/fracture interaction is a key point in the modeling of dual-porosity systems. In this paper, the modeling of oil/water imbibition is based on thediffusion equation approach of Beckner et al. The effect of gravity isincorporated through a modification of the boundary conditions imposed. Analytical and numerical solutions are presented, and computed results arecompared with experimental data. presented, and computed results are comparedwith experimental data. Gas/oil gravity drainage and imbibition are calculatedby taking into consideration the vertical saturation distribution in thematrix. The principles for the implementation of the proposed methods in areservoir simulator are described. The following limitations and assumptions apply.The models presented are valid only for two-phase oil/water and gas/oilsystems.Matrix blocks within a grid cell are identical and box-shaped withdimensions L, L, and L.For oil/water systems, capillary continuity exists inside a grid cellbetween vertically stacked matrix blocks.The two phases in the fracture system are gravity segregated.Analytical solutions can be obtained only in the oil/water case and onlyif the water level in the fracture system rises with a constant velocity andthe diffusion coefficient is constant.The matrix-block gas and oil are at capillary/gravitationalequilibrium. Flow Equations Dual-porosity reservoirs are modeled by the continuum approach, where thefracture and matrix systems are considered to be two overlapping continuousmedia. The basic equations for isothermal fluid flow in porous media aretransformed to a system of ordinary differential equations by means of theintegral finite-difference method (see Pruess and Bodvarsson). In case of adual-porosity, single-permeability reservoir composed of a continuous fracturesystem containing discontinuous matrix blocks, the following equations areobtained for each component (1 =o, g, or w) and the kth grid cell in thereservoir. Fracture equation: (1) Matrix equation: (2) where mi = (3) (4) The summation is over all phases--i.e., =o, g, and w. The sum over Index isover all grid cells adjacent to grid-cell number k. Hence Index k refers to theboundary between the grid cells k and . The individual terms of Eqs. 1 and 2 describe the transport of Component ithrough Phase by various mechanisms. For further details regarding theequations and their derivation, see Bech. Water/Oil Imbibition The formulations of the matrix/fracture exchange term in manydouble-porosity simulators suffer from two limitations:imbibition from newly contacted matrix-block face as the fracture water level advances is not described andsaturation gradients within the matrix blocks are notmodeled. These factors can be taken into consideration by modeling theimbibition as a diffusion process. The matrix-block water saturationdistribution is determined from (5) (6) In the derivation of Eqs. 5 and 6, it is assumed that the flow is 2D andthat the fluid and the rock are incompressible. It is also assumed thatoil-phase pressure gradients and gravity terms are negligible. The diffusion equation (Eq. 5) has been solved with the boundary condition S= S at the part of the matrix-block surface that is submerged in water and Sw =S, elsewhere on the surface (see Fig. 1). Initially, the matrix-block watersaturation is S everywhere. The boundary condition (7) where S corresponds to zero capillary pressure at the surface, implies thatinstantaneous imbibition occurs at the matrix/fracture in-terface. A delayedimbibition can be introduced by the boundar conditions: (8) (9) and S = S (z) is the ultimate matrix-block water saturation at the height z, which may be equal to or less than 1 - Sor. Here t = t (z) denotes the time when zwf = z; i.e., t (z) is the time whenimbibition starts at the height z. is an inverse time constant. The problem as presented in Eqs. 5 through 9 must be solved numerically. This is done by using central differences and applymg a Newton-Raphsonalgorithm in solving the nonlinear algebraic equations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3