Production Performance of Multiple Completion Designs: Openhole, Slotted Liner, ICD, and AICD: A Case Study for Water Control in Villano Field, Ecuador

Author:

Andrade Alejandro1,Chango Mario1,Atahualpa Gustavo1,Correa Ramón1,Corona Georgina2,Calvopina Byron2,Pico Juan2

Affiliation:

1. ENI

2. Halliburton

Abstract

Abstract This paper presents an analysis of the effectiveness of various downhole completion designs in reducing or deferring water production in a mature field under the presence of an active strong aquifer reservoir. The results of completions using nozzle inflow control devices (ICDs) and fluidic diode autonomous ICDs (AICDs) are compared with conventional openhole and slotted liner completions. As all of these designs were installed in the same field/reservoir, the comparisons provide a meaningful and representative analysis of well production performance to assist in the identification of the most appropriate completion design for future wells and the production optimization of existing ones. The designed vs. actual production performance of inflow control completions providing water control (ICD/AICD) is presented and discussed. The methodology was developed from comparative analysis results of conventional openhole and slotted liner vs. ICD and AICD completions. The analysis was primarily based on elapsed time comparisons for water/oil ratio (WOR) and water cut (WC) and used diagnostic plots to identify the water production mechanisms, historical drawdown (DD), productivity index (PI), and production cumulative performance (oil and water). The corrective actions are described, including operational procedures to reduce skin damage and screen plugging implemented in the Villano-23HST2 (V-23HST2) well, which is the longest horizontal well drilled in Ecuador and completed using AICDs; these corrective actions were based on lessons learned from the Villano-22D (V-22D) well, which included appropriate fluid [brine/oil-based mud (OBM)] conditioning, fluid displacement, filter cake removal, and compatibility testing between screens and the fluid in which the bottomhole assembly (BHA) was deployed. Additionally, this paper evaluates the importance of the design phase, emphasizing the importance of comparing preliminary data (permeability and water saturation) compared to actual results obtained from the initial production test. Finally, as good production results largely depend on successful operational procedures and execution, lessons learned and best practices for deploying downhole completions in future operations for the Villano field in Ecuador are discussed. Although many studies compare ICDs vs. conventional completions, few compare different inflow control technologies, such as ICDs vs. AICDs, within the same reservoir and with similar well conditions. This paper compares various inflow control technologies in the same field with cumulative production data, which verifies the effectiveness of each completion design. Based on these results, a validated methodology for ICD and AICD simulations and design is also described as the basis for achieving good production results.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3