Laboratory Measurement of Hydraulic-Fracture Conductivities in the Barnett Shale

Author:

Zhang J..1,Kamenov A..1,Zhu D..1,Hill A.D.. D.1

Affiliation:

1. Texas A&M University

Abstract

Summary Horizontal wells that intersect multistage transverse fractures created by low-viscosity fracturing fluid with low proppant loadings are the key to revitalizing production from the Mississippian Barnett shale in the Fort Worth basin in Texas. However, direct laboratory measurements of both natural- and induced-fracture conductivities under realistic experimental-design conditions are needed for reliable well-performance analysis and fracture-design optimization. In this work, a series of experiments was conducted to measure the conductivity of unpropped natural fractures, propped natural fractures, unpropped induced fractures, and propped induced fractures with a modified American Petroleum Institute (API) conductivity cell at room temperature. Fractures were induced along the natural bedding planes, preserving fracture-surface asperities. Natural-fracture infill was taken into consideration during conductivity measurements. Proppants of various sizes were placed manually between rough fracture surfaces at realistic concentrations. The two sides of the rough fractures either were aligned or were displaced with a 0.1-in. offset. After pressure testing on the system integrity, nitrogen was flowed through the proppant pack or unpropped fracture to measure the conductivity. Results from 88 experiments show that the conductivity of hydraulic fractures in shale can be measured accurately in a laboratory with appropriate experimental procedures and good control over experimental errors. It is proved that unpropped, aligned fractures can provide a conductive path after removal of free particles and debris because of the brittleness and lamination of shale. Moreover, poorly cemented natural fractures and unpropped displaced fractures can create conductivities of up to 0.5 md-ft at formation-closure stress, which is one to two orders of magnitude greater than the conductivity provided by cemented natural fractures and unpropped aligned fractures. This study shows that propped-fracture conductivity increases with larger proppant size and higher proppant concentration. Longer-term fracture-conductivity measurements indicate that, within 20 hours, the fracture conductivity could be reduced by as much as 20%.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3