Produced Water Management Strategy and Water Injection Best Practices: Design, Performance, and Monitoring

Author:

Abou-Sayed Ahmed S.1,Zaki Karim S.1,Wang Gary1,Sarfare Manoj D.1,Harris Martin H.1

Affiliation:

1. Advantek Intl. Corp.

Abstract

Summary Key factors in framing a produced water management (PWM) strategy include a company's internal and external environments, technology, and business drivers. Emerging trends for establishing an environment-friendly PWM position comprise adoption of these policies: Move toward zero emissions. No discharge to surface or seas. Waste-to-value conversion. Incremental and progressive separation. Proactive efforts to influence partners, regulators, and environmental laws. This paper covers technical approaches for addressing the production, separation, and disposal/injection segments of water injection and reservoir waterflooding procedures and the basis for selecting strategy components and PWM actions. Best practices result both from comprehensive assessments of current PWM tools and from the insights obtained from a decade-long joint industry project (JIP) on produced water re-injection (PWRI). PWRI for waterflooding or disposal is an important strategy for deriving value from waste while preserving environmental integrity during exploration and production (E&P) operations. Advances in best practices and lessons learned for injector design, operation, monitoring, assessment, and intervention provide the basis for cost minimization and green operations. Facility and subsurface engineering are linked through PWM quality targets, pumping needs, injector completions, and facility constraints. Field cases and data mining results (Abou-Sayed et al. 2005) show the variation in injector responses and underline the key elements contributing to performance. Field evidence indicates that injec-tivities suffer in matrix injection schemes despite the injection of clean water. Alternatively, injectivity maintenance using untreated produced water is feasible. The majority of injectors fracture during injection, thereby impacting facilities' statement of requirement (SOR), injector completion, sweep, and vertical conformance. This paper assesses fracture propagation during seawater and produced water injection and its impact on injector performance. Models depicting plugging of formations and fractures, vertical water partitioning, and well testing are discussed. Best practices are highlighted and the impacts on injection strategy outlined. Several field cases, as well as water injection design and analysis tools for quantifying the impact on flood and well performance, are presented.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3