Well Test Analysis: Wells Producing by Solution Gas Drive

Author:

Raghavan R.1

Affiliation:

1. U. of Tulsa

Abstract

Abstract Drawdown and buildup data in a homogeneous, uniform, closed, cylindrical reservoir containing oil and gas and producing by solution gas drive at a constant surface oil rate were investigated. The well was assumed to be located at the center of the reservoir. Gravity effects were not included. Though the reservoir systems studied were assumed to be homogeneous, the effect of a damaged region in the vicinity of the wellbore was examined. Recently, alternate expressions for describing multiphase flow through porous media have been presented. These expressions incorporate changes presented. These expressions incorporate changes in effective permeability and fluid properties (formation volume factor, viscosity, gas solubility) with pressure by means of a pseudopressure function. The validity of applying the pseudopressure-function concept to drawdown and pseudopressure-function concept to drawdown and buildup testing for multiphase-flow situations was investigated. The pseudopressure function for analyzing drawdown behavior is calculated difrerently from that required to analyze buildup data. Consequently, two pseudopressure functions are required for analysis of well behavior in multiphase-flow systems. Dimensionless groups are used to extend the results to other situations having different permeabilities, spacing, reservoir thickness, well permeabilities, spacing, reservoir thickness, well radii, porosity, etc., provided the PVT relations and relative-permeability characteristics are identical to those used in this study. The pseudopressure-function concept used to analyze pseudopressure-function concept used to analyze drawdown and buildup behavior extends the applicability of the results to a wide range of PVT relations and relative-permeability characteristics. Introduction During the past 30 years, more than 300 publications have considered various problems publications have considered various problems pertaining to well behavior. Except for a few (about pertaining to well behavior. Except for a few (about 10), most papers examining transient pressure behavior assume that the fluids in the reservoir obey the diffusivity equation. This implies the use of a single-phase, slightly compressible fluid. The reason for the popularity of this approach is twofold:(1)the ease with which the diffusivity equation can be solved for a wide variety of problems, and(2)the demonstration by some problems, and(2)the demonstration by some workers that, for some multiphase-flow situations, single-phase flow results may be used provided appropriate modifications are made. The necessary modifications are summarized in Ref. 1. The main objective of this study is to present a method for rigorously incorporating changes in fluid properties and relative-permeability effects in the properties and relative-permeability effects in the analysis of pressure data when two phases of oil and gas are flowing. This should enable the engineer to calculate the absolute formation permeability rather than the effective permeability to each of the flowing phases. This method is based on an idea suggested by Fetkovich, who proposed that if an expression similar to the real gas pseudopressure is defined, then equations describing pseudopressure is defined, then equations describing simultaneous flow of oil and gas through porous media may be simplified considerably. The validity of the equations and methods for calculating the pseudopressure function, however, was not presented pseudopressure function, however, was not presented by Fetkovich. LITERATURE REVIEW AND THEORETICAL CONSIDERATIONS General equations of motion describing multiphase flow in porous media have been known since 1936. These equations, and the assumptions involved in deriving them, are discussed thoroughly in the literature and will not be considered here. Equations for two-phase flow were first solved by Muskat and Meres for a few special cases. Evinger and Muskat studied the effect of multiphase flow on the productivity index of a well and examined the steady radial flow of oil and gas in a porous medium. Under conditions of steady radial porous medium. Under conditions of steady radial flow the oil flow rate is given by (1) SPEJ P. 196

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3