A Semiempirical Model for Barium-Strontium-Sulfate Solid Solution Scale Crystallization and Inhibition Kinetics at Oilfield Conditions

Author:

Zhao Yue1,Dai Zhaoyi2,Dai Chong1,Wang Xin1,Paudyal Samridhdi1,Ko Saebom1,Yao Xuanzhu1,Kan Amy T.1,Tomson Mason1

Affiliation:

1. Rice University

2. Rice University (Corresponding author)

Abstract

Summary Scale inhibitors have been widely used as one of the most efficient methods for sulfate-scale control. To accurately predict the required minimum inhibitor concentration (MIC), we have previously developed several crystallization and inhibition models for pure sulfate scales, including barite, celestite, and gypsum. However, disregarding the wide existence of barium-strontium-sulfate (Ba-Sr-SO4) solid solution in the oil field, no related models have been developed that would lead to large errors in MIC determination. In this study, the induction time of Ba-Sr-SO4 solid solution was measured by laser apparatus with or without different concentrations of scale inhibitor diethylenetriamine penta(methylene phosphonic acid) (DTPMP) at the conditions of barite saturation index (SI) from 1.5 to 1.8, temperature (T) from 40 to 70°C, and [Sr2+]/[Ba2+] ratios from 0 to 15 with celestite SI < 0. The results showed that the Ba-Sr-SO4 solid solution’s induction time increases with the [Sr2+]/[Ba2+] ratio at a fixed barite SI, T, and DTPMP dosage. That means the MIC will be overestimated if it is calculated by the previous semiempirical pure barite crystallization and inhibition models without considering the presence of Sr2+. To resolve such deviations, the novel quantitative Ba-Sr-SO4 solid solution crystallization and inhibition models were developed for the first time. The novel models are in good agreement with the experimental data. They can be used to predict the induction time and MIC more accurately at these common Ba2+ and Sr2+ coexisting scenarios. The observations and new models proposed in this study will significantly improve the barite scale management while Ba2+ and Sr2+ coexist in the oil field.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3