Affiliation:
1. China University of Petroleum, East China; Shandong Provincial Key Laboratory of Deep Oil and Gas; and Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences (Corresponding author; email: liujingshou@126.com)
2. China University of Geosciences, Beijing
3. Shandong University of Science and Technology
4. Key Laboratory of Deep Earth Science and Engineering (Sichuan University), Ministry of Education
Abstract
Summary
Fractured reservoirs account for more than one-half of the global oil and gas output and thus play a pivotal role in the world’s energy structure. Under diagenesis, rocks become dense, and tectonic fractures easily form under subsequent tectonic movement. These tectonic fractures are the main seepage conduits of tight sandstone reservoirs and are important determinants of whether a tight sandstone reservoir can have high, stable oil and gas production. The influence of multistage tectonic movement has led to well-developed fractures in the Ordos Basin in central China. In the process of reservoir development, the effective stress on the fracture surface increases because of the decrease in pore pressure, and the fracture aperture, porosity, and permeability also change accordingly. Therefore, modeling of the dual porosity and dual permeability of fractured reservoirs requires a dynamic 4D modeling process related to time. In this paper, we propose a 4D modeling method of dual porosity and dual permeability in fractured tight sandstone reservoirs. First, the porosity and permeability distribution of the reservoir matrix are established based on reservoir modeling. Based on geomechanical modeling, the density and occurrence of natural fractures are predicted by the paleostress field. The in-situ stress field is used to analyze the fracture aperture, and the variation in the fracture aperture during the development process is analyzed along with the variation in the in-situ stress in the development process to realize 4D modeling of the porosity and permeability of fractured reservoirs. The total porosity of the fracture is 0 to 8 × 10−3%, and the principal value of the planar permeability of the fracture is 0 to 3 × 10−3 µm2; the principal value of the fracture permeability is concentrated in the direction of 65 to 70° east-northeast. The simulated fracture porosity stress sensitivity index is distributed between 0 and 0.2, and the fracture permeability stress sensitivity index is distributed between 0 and 0.4. The Young’s modulus of the rock, in-situ stress parameters, and sound velocity in the rock are important factors affecting the fracture stress sensitivity.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献