Affiliation:
1. Stanford U. and Yangtze U.
2. Stanford U.
Abstract
Summary
Decline-curve-analysis models are used frequently but still have many limitations. Approaches of decline-curve analysis used for naturally fractured reservoirs developed by waterflooding have been few. To this end, a decline-analysis model derived on the basis of fluid-flow mechanisms was proposed and used to analyze the oil-production data from naturally fractured reservoirs developed by waterflooding. Relative permeability and capillary pressure were included in this model. The model reveals a linear relationship between the oil-production rate and the reciprocal of the oil recovery or the accumulated oil production. We applied the model to the oil-production data from different types of reservoirs and found a linear relationship between the production rate and the reciprocal of the oil recovery as foreseen by the model, especially at the late period of production. The values of maximum oil recovery for the example reservoirs were evaluated with the parameters determined from the linear relationship. An analytical oil-recovery model was also proposed. The results showed that the analytical model could match the oil-production data satisfactorily. We also demonstrated that the frequently used nonlinear type curves could be transformed to linear relationships in a log-log plot. This may facilitate the production-decline analysis. Finally, the analytical model was compared with conventional models.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献