Assessing 3D Bedding Plane Effects on Well Performance in a Field-Scale Unconventional Reservoir Model Using EDFM

Author:

Leines-Artieda Joseph Alexander1,Fiallos-Torres Mauricio Xavier1,Useche Franklin2,Fonseca Rahul-Mark2,Mahmoud Salah El din2,Alqaydi Maryam2,Alharthi Amena2,Al Hashmi Abdulla2,Ramsay Travis2,Al Bannay Aamer2,Song Xueling1,Yu Wei1,Miao Jijun1

Affiliation:

1. Sim Tech LLC

2. ADNOC

Abstract

Abstract Bedding-plane slip effects during hydraulic fracturing have recently gained interest in unconventional plays due to their influence in hydraulic fracture growth in vertical and horizontal directions. However, most of the current workflows cannot fully model field-scale sub-horizontal orientation of bedding planes because of complications with gridding techniques, or due to simplifications related to the use of 2D models. These challenges have motivated the assessment of 3D bedding plane interactions on well performance using the embedded discrete fracture model (EDFM) technology for field case scenarios. An efficient hydraulic fracture propagation model is used to model hydraulic fracture growth in the presence of bedding layers. The model captures shear slippage at the bedding layer interfaces and corrects the calculated stress intensity factor to account for height containment. A hydraulic fracture model, constrained by geomechanical information, is built in a corner point grid. Resulting hydraulic fracture geometries and identified bedding layer fractures are transferred to EDFM by using a 3D bedding plane generator, which places sub-horizontal polygons across the well trajectory, honoring its orientation and geometry. To locate the spatial position of bedding layers, geostatistical constrains, core analysis and petrophysical interpretations – including well image logs – can be taken into account. Lastly, a reservoir simulation model is built to evaluate the effects of bedding planes on well performance. 3D effects of bedding planes in a shale gas reservoir were captured in a field case scenario using numerical models. Higher contribution to production was observed in the results of this study. The main reasons are larger fracture lengths generated along the pay zone caused by bedding plane influence in the fracture propagation process and shear slippage along bedding plane fractures, which create a larger effective conductive surface area. When modeling bedding planes, computational efficiency is substantial due to the EDFM method, preserving spatial orientation and geometry of each bedding plane. Direct assessment of bedding plane properties is provided, which highlights the importance of capturing their interactions with hydraulic fracture growth and well performance. A seamless integration of bedding plane models can be achieved in an efficient workflow that provides key lessons for future fracture design and well spacing optimization.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3