Theoretical Basis for Interpretation of Temperature Data During Acidizing Treatment of Horizontal Wells

Author:

Tabatabaei M..1,Zhu D..1,Hill A.D.. D.1

Affiliation:

1. Texas A&M University

Abstract

Summary Optimum fluid placement is crucial for successful acid-stimulation treatments of long horizontal wells where there is a broad variation of reservoir properties along the wellbore. Various methods have been developed and applied in the field to determine the fluid placement and effectiveness of the diversion process, but determining the injection profile during the course of matrix acidizing still remains a challenge. Recently, distributed temperature-sensing (DTS) technology has enabled us to observe the dynamic temperature profile along the wellbore during acid treatments. Quantitative interpretation of dynamic temperature data can provide an invaluable tool to assess the effectiveness of the treatment as well as optimize the treatment through on-the-fly modification of the treatment parameters such as volume, injection rate, and diversion method. In this paper, we discuss how fluid placement can be quantified using dynamic temperature data. A mathematical model has been developed to simulate the temperature behavior along the wellbore during and shortly after acid treatments. This model couples a wellbore and a near-wellbore flow and thermal model considering the effect of both mass and heat transfer between the wellbore and the formation. The model accounts for all significant thermal processes involved during a treatment, including heat of reaction, conduction, and convection. Then, an inversion procedure is applied to interpret the acid-distribution profile from the measured temperature profiles. To illustrate how to apply the model and analyze the DTS data, examples of matrix acidizing are presented. The temperature, flow, and pressure data were generated by a horizontal well-acidizing simulator. The inverse model is verified, and the effect of the distribution of stimulation fluid along the lateral and the effectiveness of the diversion processes on the transient temperature response is also discussed. We address some issues regarding solving the inverse problem and discuss the alternative methods of using warm-back information for cases in which inversion is difficult.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3