Producing-Gas/Oil-Ratio Behavior of Multifractured Horizontal Wells in Tight Oil Reservoirs

Author:

Jones R. Steven1

Affiliation:

1. Newfield Exploration Company

Abstract

Summary Horizontal wells with hydraulic fractures in tight oil reservoirs show producing-gas/oil-ratio (GOR) behavior that is very different from conventional, higher-permeability reservoirs. This paper explains the reasons for the observed behavior by use of reservoir simulation, with field examples from the STACK and SCOOP plays of the Anadarko Basin in central Oklahoma. A framework for interpreting observed GOR behavior in tight black-oil reservoirs is modeled after the following stages in a well's history. Some stages may not be visible because of the degree of undersaturation, flowing-bottomhole-pressure schedule, finite-conductivity fractures, and duration of the transient-flow period. Stage 1: Early GOR is constant at the initial solution GOR (Rsi) while bottomhole flowing pressure is above the bubblepoint. Stage 2: A rise in GOR as bottomhole flowing pressure declines to less than the bubblepoint. Stage 3: The transient GOR “plateau”, which is characteristic of transient linear flow. Stage 4: A continuous rise in GOR during boundary-dominated flow. Fundamental differences between linear and radial flow, which cause the dependence of GOR on flowing bottomhole pressure, are explained by use of simulation. During transient linear flow, the GOR response to changes in flowing bottomhole pressure is independent of permeability for infinite-conductivity fractures, but not for finite-conductivity fractures. Several practical observations are made. Knowing Rsi and the transient-GOR-plateau level in an area can help one interpret where a well is in its GOR history. Rate-transient-analysis (RTA) diagnostic plots are altered by rising GOR, and sometimes show an early unit slope. During boundary-dominated flow, GOR is more a function of cumulative production than of time; wells with closer fracture spacing have a faster GOR rise with time, but also recover oil more quickly. If compound linear flow develops, GOR can decline late in the well life. The Meramec and Woodford formations in STACK can be history matched without invoking a suppressed bubblepoint caused by pore-proximity effects. The critical gas saturation in the Meramec appears to be in the range of 0–5%. Technical contributions include a framework for interpreting GOR behavior over well life; the effect of changing bottomhole flowing pressure on GOR; the effect of fracture spacing, conductivity, and half-length on GOR; and the effect of GOR on RTA diagnostic plots.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3