Co-optimization of Enhanced Oil Recovery and Carbon Dioxide Sequestration in a Compositionally Grading Iranian Oil Reservoir; Technical and Economic Approach

Author:

Mokhtari Rasoul1,Ayatollahi Shahab2,Hamid Karim3,Zonnouri Ashkan3

Affiliation:

1. Shiraz University

2. Sharif University of Technology

3. National Iranian South Oil Company

Abstract

Abstract Geological sequestration of carbon dioxide through enhanced oil recovery operation has been recognized as one of the more viable means of reducing emissions of anthropogenic CO2 into the atmosphere. The objective of this paper is to find the best EOR scenario for a compositional grading Iranian oil reservoir to be fed by a giant power plant which produces huge amount of CO2 emission, through simulation study. For this purpose a three-dimensional simplified yet realistic model of the reservoir considering compositional grading was built based on long term production data. Various simulation cases to combine different injection schemes and examining the effect of injection rate were conducted to propose an injection-production strategy that can optimize the oil recovery along with CO2 storage. This study is the first attempt to investigate technical and economic aspects of simultaneous CO2-EOR and sequestration for the nominated reservoir. Besides, this approach could be used for any gas cycling and natural gas storage process into this reservoir. The results presented in the study clearly demonstrated that continuous CO2 injection scheme through one injection and one production well, is the best scenario for simultaneous EOR and sequestration/gas storage which lead to higher CO2 storage and oil recovery efficiency. Through continuous CO2 injection, this reservoir has potential for large scale CO2-EOR and storage projects (injection of more than 240 thousand metric tons of CO2 per year with only one injection well without any field development plan). Finally an economic study is performed to confirm the best scenario.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3