Screening and Evaluation of New Technologies in Developing Super-Heavy Oil or Oil Sands Projects

Author:

Liang Guangyue1,Xie Qian1,Liu Shangqi1,Liu Yang1,Xia Zhaohui1,Bao Yu1,Zhou Jiuning1

Affiliation:

1. Research Institute of Petroleum Exploration and Development, CNPC

Abstract

Abstract SAGD process has been widely applied in super-heavy oil and oil sands projects. Slow vertical steam chamber growth and non-uniform conformance tends to generate lower oil rate and higher steam to oil ratio in SAGD projects, which were mainly influenced by thin pay, shale interlayers and bottom transition zone. Therefore, this paper presents screening and evaluation results of many emerging technologies to develop super-heavy oil or oil sands projects. 15 kinds of new technologies were investigated by AER reports and numerous papers. 6 of them were evaluated by numerical simulation, including multilateral injector or producer, vertical slimholes assisted SAGD process, steam drive assisted gravity drainage, offset SAGD well pair, and bottom-up gravity-assisted pressure drive, etc. Besides, the experience of field practices related to many little-known emerging technologies was extensively and deeply analyzed including single vertical well SAGD process, fishbone wedge producer, liner or tubing deployed ICD/FCD, various dilation practices in preheating or SAGD phase, movable steam splitter, re-drill injector or producer with optimized location, steam drive assisted gravity drainage, etc. Moreover, the mechanisms, detailed pilots and challenges were further summarized. For thin pay, single vertical well SAGD process aims to realize vertical multi-stage fracturing based on expansion pipe, accelerate steam chamber growth from top to the bottom, maximize the effect of gravity drainage to achieve earlier peak oil rate. For the reservoir impacted by shale laminae, steam drive assisted gravity drainage under different well spacing can be trialed. Steam circulation or stimulation, hydraulic fracturing and multilateral producer may be applied from 5m, 10m to 20-30m horizontal spacing while keep vertical spacing at 3-5m. Besides, enhancing vertical permeability, drilling vertical channels or enforcing horizontal driving force are possible solutions to overcome shale interlayers and bottom water. Dilation process assisted by waste water, polymer, chemical or low cost catalyzer in more than one hundred well pairs can reduce steam consumption in start-up process and achieve better early SAGD performance. Bottom-up gravity-assisted pressure drive process overwhelms SAGD process in terms of accelerated oil production and lower SOR in relatively low quality oil sands projects such as thin pay, shale interlayers, bottom transition zone, etc. Especially, the practices of wedge wells, multilateral injector or producer, steam drive assisted gravity drainage based on multilateral producer, and re-drill injector or producer successfully tapped the remaining oil, enhanced the peak oil rate or reduced SOR significantly. This paper presents much novel information about research advancement and field practices of many new technologies. These technologies can be effectively applied to relatively low quality heavy oil projects such as thin pay, shale interlayers, bottom transition zone, etc.

Publisher

SPE

Reference36 articles.

1. Alberta Energy Regulator. In Situ Performance Presentations. http://www.aer.ca/data-and-publications/activity-and-data/in-situ-performance-presentations, 2010-2022.

2. Recovery Process [P];Arthur

3. Bayestehparvin B. , Farouq AliS. M., AbediJ. Case Histories of Solvent Use in Thermal Recovery. SPE-185734-MS presented at theSPE Western Regional Meeting held in Bakersfield, California, USA, 2017.

4. BitCan Website. 2022. Technology overview. http://www.bitcange.com/technologies/fast-and-uniform-sagd-start-up-enhancement-fuse-patents-pending/.

5. Bogachev K. , TranH., and MilyutinS. Thermal Simulation with Multilateral Wells. SPE-182005-MS presented at theSPE Russian Petroleum Technology Conference and Exhibition held in Moscow, Russia, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3