Understanding Overpressure Trends Helps Optimize Well Planning and Field Development in a Tectonically Active Area in Kuwait

Author:

Khan K.1,Al-Awadi M.2,Dashti Q.2,Kabir M.R.2,Aziz R.M.2

Affiliation:

1. Schlumberger

2. Kuwait Oil Company

Abstract

Abstract Sporadic but significant drilling downtime, potentially linked to field-scale pore pressure anomalies, has occurred during drilling to a deep carbonate reservoir in North Kuwait. Some wells experienced well-control situations while some others suffered severe mud losses. The field data show that pore pressure can vary between 9 ppg and 19 ppg before a well reaches its target depth of approximately 15,000 ft (TVD). These observations require the establishment of a good understanding of the subsurface pore pressure in order to optimize drilling operations, assess reservoir risks and provide input for better well completions. Geomechanical studies, utilizing pore pressure and temperature data from downhole measurements, openhole logs, drilling records and lithological information, were conducted to explain the overpressure mechanisms. Analyses indicate that overpressure above the reservoir appears to result mainly from hydrocarbon accumulations and subsequent gas generation during hydrocarbon maturation where pore pressure has been measured to be as high as 15 ppg. However, due to variable sealing conditions and field-scale faulting and fracturing, the pore pressure can vary within the same field. Pore pressure close to overburden stress (~20 ppg) observed while drilling through underlying salt and interbedded anhydrite layers is caused by trapping of water released during gypsum-anhydrite phase transformation. In the reservoir below salt, pore pressure varying between 16 ppg and 17 ppg can be attributed mainly to hydrocarbon generation and buoyancy effects. Towards the bottom of the reservoir, pore pressure is slightly low and varies between 14 ppg and 15 ppg. The severity of vertically and spatially varying borehole breakouts suggests that variations in tectonic stresses are present on the field scale, which may impact the generation of stress-related overpressure. Moreover, the intermittent presence of anhydrite layers and stiff intact limestone beds may act as localized seals generating overpressure. Geomechanical analyses were subsequently used to constrain the contemporary stress state and fracture gradient profile. These helped explain hole stability issues experienced during drilling and assisted in planning future drilling operations. In addition, the data provided better quantitative input for reservoir risk analysis and well planning for the field development campaign.

Publisher

SPE

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimensionless Coordinate Transformation of 1D Basin Modeling Equation;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

2. Basic Definitions;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

3. Empirical Relations for Fluid (Brine, Oil, Gas) Properties;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

4. Recent Advances in Geopressure Prediction and Detection Technology and the Road Ahead;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

5. Guidelines for Best Practices;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3