Using Continuous Core Measurements to Reduce the Uncertainty on Rock Strength vis-à-vis Geomechanical Modeling in a Tight Gas Reservoir in Sultanate of Oman

Author:

Al-Aamri Mohammed1,Al-Kindi Ahmed1,Terras Yan1,Ajmi Hussain1,Khaldi Saud1,Govind Rao Dhiresh2,Perumalla Satya2,Shinde Ashok2,Lhomme Tanguy3,Germay Christophe3

Affiliation:

1. Petroleum Development Oman

2. Baker Hughes

3. EPSLOG

Abstract

Abstract This paper focuses on the case study of the geomechanical evaluation of a tight gas reservoir in Oman. Rock strength was characterized using data inputs/measurements with the objective to reduce uncertainty on predictions of wellbore stability in four deep gas wells. As a primary input for many standard geomechanical models, rock strength parameter is routinely measured on rock samples using triaxial/uniaxial tests. This parameter is traditionally named as Uniaxial Compressive Strength (UCS) measured during the axial loading and crushing of cylindrical "core plugs" extracted from cores. Although considered as a standard for rock strength evaluation, this method has some limitations such as (i) sample destruction, (ii) natural bias in weak formations (iii) natural dispersion, (iv) discretization of the measurement along sampled intervals and (v) sample preparation challenges. The scratch test has been developed as a rapid and cost effective rock strength testing method addressing these limitations. The relative advantages of the scratch test as an alternative to standard rock strength testing are discussed and its added value demonstrated in the context of practical applications for a tight gas reservoir. Geomechanical data was acquired from four different wells with the following measurements: (i) Acoustic wireline log, (ii) Uniaxial compressive strength resulting from laboratory tests on plug samples, (iii) a continuous high-resolution strength profile interpreted from scratch tests performed on whole cores. Then, the data from all these sources has been integrated following a dedicated workflow designed to reduce the uncertainty in the output of strength models from wireline logs, through careful handling of data resolution differences and heterogeneity mapping. Encouraging correlations between core-based measurements and scratch test suggests that the scratch test has emerged as a valid alternative to standard rock mechanical tests in suitable situations. Robust statistics are provided for strength and explanations are proposed for outlier values from tests on plug samples. Furthermore, the continuity and the high resolution of the strength profile enables a much better calibration of strength proxies from acoustic wireline logs. Finally, the scratch test yield values from shale intervals that were traditionally overlooked by plug site selections for rock mechanical testing. The strength assessment protocol from the scratch test handles rock heterogeneity with a much larger data set than conventional rock strength testing methods. This enables more robust core property-log calibration at different length scales. Such continuous high resolution profiles of rock properties leads to a significant reduction in uncertainty in petrophysical and geomechanics models, and better decision making in well design and field management.

Publisher

SPE

Reference7 articles.

1. UCS Estimation through Uniaxial Compressive Test, Scratch Test and Based Log Empirical Correlation;Borba,2014

2. A Phenomenological Model for the Drilling Action of Drag Bits;Detournay;International J. Rock Mechanics & Mining Sci. & Geomechanics Abstracts,1992

3. The Scratch Test: A High Resolution Log of Rock Strength With Application to Geomechanic and Petrophysic;Germay,2014

4. Determining Strength and Fracture Toughness of Rock from Scratch Tests;He,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3