History, Evolution, and Future of Casing Design Theory and Practice

Author:

Howard John A.1,Trevisan Ruggero1,McSpadden Albert1,Glover Simon1

Affiliation:

1. Altus Well Experts, Inc.

Abstract

Abstract Casing design and the associated load assumptions have evolved considerably over the last 30 years. The objective of this paper is to trace the history, evolution and future of casing design by means of the type of load cases and the assumptions made for them as it evolved from the early 1960's to the modern load case requirements for wells drilled in the 2020's. The vast majority of tubular failures in oil & gas wells are not attributable to computational errors in calculating design loads, but rather are due to a shortfall in considering the appropriate load scenarios. One common shortfall includes making incorrect or oversimplified assumptions for the initial and final temperature and pressure conditions. There is no industry standard for casing or tubing design loads, but there is an industry accepted standard process for the calculation of the stress on tubulars once the load cases are determined. Each operating company may use a different set of load assumptions depending on the well type and risk assessment. This work also keeps in view the major computational tools used during each step change of the casing design evolution: slide rule/nomographs, HP 41C calculators, PC DOS and Windows programs, and the latest Cloud-Native paradigm with REST API's within a microservices architecture. A REST API (also known as RESTful API) is an Application Programming Interface (API) that conforms to the constraints of Representational State Transfer (REST) architectural style commonly used in current Cloud computing technology. The scope will also include ongoing research and development to address shortcomings of previous load case assumptions and calculations for extended reach and HPHT wells, closely spaced wells, and geothermal wells. Modern wells and modern casing design load cases are in a constant state of evolution and casing failures will occur unless engineers and their tools also evolve.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3