Permeability~Dependent Propagation of Polyacrylamides Under Near-Wellbore Flow Conditions

Author:

Zitha P.1,Chauveteau G.1,Zaitoun A.1

Affiliation:

1. Institut Français du Petrole

Abstract

ABSTRACT A new type of polyacrylamide flow-induced retention has been observed in core experiments simulating near-wellbore flow conditions. The retention is due to the bridging of pore throats by adsorbed macromolecules previously stretched under elongational flow. It occurs in low-to-medium permeability granular packs (up to k=1000 mD in our test conditions) and leads to progressive but severe plugging. The present paper shows that polymer placement in the reservoir surrounding the wellbore can be very different from what is predicted from stable values of polymer mobility. In heterogeneous reservoirs, polymer penetration in low-permeability layers is expected to be strongly reduced, thus allowing a deeper penetration into higher permeability zones. The polymer can thus improve reservoir conformance around the wellbore when injected directly through the entire opened interval. Near-wellbore polymer or gel treatments may thus not require zone isolation to be efficient. INTRODUCTION Polyacrylamides are extensively used in the oilfield industry because of their low cost, good filterability and high viscosifying power. In polymer flooding applications, high-molecular-weight polyacrylamides are added at a low concentration (frequently below 1000 ppm) to injection brine in order to thicken and thus improve the sweep efficiency of the displacing fluid. In heterogeneous reservoirs, the role of the polymer is to provide a good mobility control to injection brine, thus avoiding water channeling through high-permeability streaks.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3