Optimal Well Placement Under Uncertainty Using a Retrospective Optimization Framework

Author:

Wang Honggang1,Ciaurri David Echeverría1,Durlofsky Louis J.1,Cominelli Alberto2

Affiliation:

1. Stanford University

2. Eni

Abstract

Summary Subsurface geology is highly uncertain, and it is necessary to account for this uncertainty when optimizing the location of new wells. This can be accomplished by evaluating reservoir performance for a particular well configuration over multiple realizations of the reservoir and then optimizing based, for example, on expected net present value (NPV) or expected cumulative oil production. A direct procedure for such an optimization would entail the simulation of all realizations at each iteration of the optimization algorithm. This could be prohibitively expensive when it is necessary to use a large number of realizations to capture geological uncertainty. In this work, we apply a procedure that is new within the context of reservoir management—retrospective optimization (RO)—to address this problem. RO solves a sequence of optimization subproblems that contain increasing numbers of realizations. We introduce the use of k -means clustering for selecting these realizations. Three example cases are presented that demonstrate the performance of the RO procedure. These examples use particle swarm optimization (PSO) and simplex linear interpolation (SLI)-based line search as the core optimizers (the RO framework can be used with any underlying optimization algorithm, either stochastic or deterministic). In the first example, we achieve essentially the same optimum using RO as we do using a direct optimization approach, but RO requires an order of magnitude fewer simulations. The results demonstrate the advantages of cluster-based sampling over random sampling for the examples considered. Taken in total, our findings indicate that RO using cluster sampling represents a promising approach for optimizing well locations under geological uncertainty.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3