Heavy Oil Production Enhancement by Viscosity Reduction

Author:

Shuler Patrick1,Tang Yongchun2,Tang Hongxin1

Affiliation:

1. ChemEOR, Inc.

2. Power Environmental Energy Research Institute (PEERI)

Abstract

Abstract This paper presents an evaluation of different chemical agents that can reduce dramatically the apparent viscosity of a heavy crude oil or a thick emulsion. The focus of this study is on methods to improve the production of heavy oils and very viscous emulsions such as are found in California, Canada, and Venezuela. This study identified several surfactant-demulsifier formulations that can reduce the viscosity of such heavy fluids by as much as 3 orders of magnitude. If efficient chemical solutions are applied downhole to reduce produced fluids viscosity this offers an economical means to reduce the energy required to move the oil between the well to the surface facilities, thereby improving well productivity and reducing lifting costs. It is especially suited for wells that are producing fluids at colder temperatures (less than 150 °F) that have extreme fluid viscosities (from 10,000 to 100,000 cp); these may be reduced to 100 – 500 cp by gentle mixing with aqueous-based chemical treatment solutions. Wells with high hydraulic pressures, poor pump efficiencies, or excessive pressure losses in the facility gathering systems are good candidates for these treatments. Reducing these extreme viscosities will have benefits such as lowering the power consumption to lift the produced fluids and reduce system pressures. Chemical costs for such chemical treatments are less than a dollar a barrel of oil, and can be even less than $0.50 per barrel of heavy oil. These same or similar chemical systems also may be beneficial for longer distance transportation of heavy oils, as pretreatments for cyclic steam treatments, or as additives in the stimulation fluids applied in heavy oil wells. This laboratory investigation employed a unique novel viscometer that will measure accurately the effective dynamic viscosity of multi-phase liquids (emulsions) from several centiposes to thousands of centipoise. This instrument was developed to overcome the limitations of conventional laboratory viscometers to measure unstable emulsions that may separate during the measurement process.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3