Application of Image Processing Techniques in Deep-Learning Workflow to Predict CO2 Storage in Highly Heterogeneous Naturally Fractured Reservoirs: A Discrete Fracture Network Approach

Author:

Tariq Zeeshan1,Yan Bicheng1,Sun Shuyu1

Affiliation:

1. King Abdullah University of Science and Technology

Abstract

AbstractNaturally fractured reservoirs (NFRs), such as fractured carbonate reservoirs, are commonly located worldwide and have the potential to be good sources of long-term storage of carbon dioxide (CO2). The numerical reservoir simulation models are an excellent source for evaluating the likelihood and comprehending the physics underlying behind the interaction of CO2 and brine in subsurface formations. For various reasons, including the rock's highly fractured and heterogeneous nature, the rapid spread of the CO2 plume in the fractured network, and the high capillary contrast between matrix and fractures, simulating fluid flow behavior in NFR reservoirs during CO2 injection is computationally expensive and cumbersome. This paper presents a deep-learning approach to capture the spatial and temporal dynamics of CO2 saturation plumes during the injection and monitoring periods of Geological Carbon Sequestration (GCS) sequestration in NFRs. To achieve our purpose, we have first built a base case physics-based numerical simulation model to simulate the process of CO2 injection in naturally fractured deep saline aquifers. A standalone package was coded to couple the discrete fracture network in a fully compositional numerical simulation model. Then the base case reservoir model was sampled using the Latin-Hypercube approach to account for a wide range of petrophysical, geological, reservoir, and decision parameters. These samples generated a massive physics-informed database of around 900 cases that provides a sufficient training dataset for the DL model. The performance of the DL model was improved by applying multiple filters, including the Median, Sato, Hessian, Sobel, and Meijering filters. The average absolute percentage error (AAPE), root mean square error (RMSE), Structural similarity index metric (SSIM), peak signal-to-noise ratio (PSNR), and coefficient of determination (R2) were used as error metrics to examine the performance of the surrogate DL models. The developed workflow showed superior performance by giving AAPE less than 5% and R2 more than 0.94 between ground truth and predicted values. The proposed DL-based surrogate model can be used as a quick assessment tool to evaluate the long-term feasibility of CO2 movement in a fracture carbonate medium.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3